thirdparty/google_appengine/google/appengine/api/images/images_stub.py
author Mario Ferraro <fadinlight@gmail.com>
Sun, 15 Nov 2009 22:12:20 +0100
changeset 3093 d1be59b6b627
parent 2309 be1b94099f2d
permissions -rwxr-xr-x
GMaps related JS changed to use new google namespace. Google is going to change permanently in the future the way to load its services, so better stay safe. Also this commit shows uses of the new melange.js module. Fixes Issue 634.

#!/usr/bin/env python
#
# Copyright 2007 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Stub version of the images API."""



import logging
import StringIO

try:
  import PIL
  from PIL import _imaging
  from PIL import Image
except ImportError:
  import _imaging
  import Image

from google.appengine.api import apiproxy_stub
from google.appengine.api import images
from google.appengine.api.images import images_service_pb
from google.appengine.runtime import apiproxy_errors


def _ArgbToRgbaTuple(argb):
  """Convert from a single ARGB value to a tuple containing RGBA.

  Args:
    argb: Signed 32 bit integer containing an ARGB value.

  Returns:
    RGBA tuple.
  """
  unsigned_argb = argb % 0x100000000
  return ((unsigned_argb >> 16) & 0xFF,
          (unsigned_argb >> 8) & 0xFF,
          unsigned_argb & 0xFF,
          (unsigned_argb >> 24) & 0xFF)


class ImagesServiceStub(apiproxy_stub.APIProxyStub):
  """Stub version of images API to be used with the dev_appserver."""

  def __init__(self, service_name='images'):
    """Preloads PIL to load all modules in the unhardened environment.

    Args:
      service_name: Service name expected for all calls.
    """
    super(ImagesServiceStub, self).__init__(service_name)
    Image.init()

  def _Dynamic_Composite(self, request, response):
    """Implementation of ImagesService::Composite.

    Based off documentation of the PIL library at
    http://www.pythonware.com/library/pil/handbook/index.htm

    Args:
      request: ImagesCompositeRequest, contains image request info.
      response: ImagesCompositeResponse, contains transformed image.
    """
    width = request.canvas().width()
    height = request.canvas().height()
    color = _ArgbToRgbaTuple(request.canvas().color())
    canvas = Image.new("RGBA", (width, height), color)
    sources = []
    if (not request.canvas().width() or request.canvas().width() > 4000 or
        not request.canvas().height() or request.canvas().height() > 4000):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
    if not request.image_size():
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
    if not request.options_size():
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
    if request.options_size() > images.MAX_COMPOSITES_PER_REQUEST:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
    for image in request.image_list():
      sources.append(self._OpenImage(image.content()))

    for options in request.options_list():
      if (options.anchor() < images.TOP_LEFT or
          options.anchor() > images.BOTTOM_RIGHT):
        raise apiproxy_errors.ApplicationError(
            images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
      if options.source_index() >= len(sources) or options.source_index() < 0:
        raise apiproxy_errors.ApplicationError(
            images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
      if options.opacity() < 0 or options.opacity() > 1:
        raise apiproxy_errors.ApplicationError(
            images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
      source = sources[options.source_index()]
      x_anchor = (options.anchor() % 3) * 0.5
      y_anchor = (options.anchor() / 3) * 0.5
      x_offset = int(options.x_offset() + x_anchor * (width - source.size[0]))
      y_offset = int(options.y_offset() + y_anchor * (height - source.size[1]))
      alpha = options.opacity() * 255
      mask = Image.new("L", source.size, alpha)
      canvas.paste(source, (x_offset, y_offset), mask)
    response_value = self._EncodeImage(canvas, request.canvas().output())
    response.mutable_image().set_content(response_value)

  def _Dynamic_Histogram(self, request, response):
    """Trivial implementation of ImagesService::Histogram.

    Based off documentation of the PIL library at
    http://www.pythonware.com/library/pil/handbook/index.htm

    Args:
      request: ImagesHistogramRequest, contains the image.
      response: ImagesHistogramResponse, contains histogram of the image.
    """
    image = self._OpenImage(request.image().content())
    img_format = image.format
    if img_format not in ("BMP", "GIF", "ICO", "JPEG", "PNG", "TIFF"):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.NOT_IMAGE)
    image = image.convert("RGBA")
    red = [0] * 256
    green = [0] * 256
    blue = [0] * 256
    for pixel in image.getdata():
      red[int((pixel[0] * pixel[3]) / 255)] += 1
      green[int((pixel[1] * pixel[3]) / 255)] += 1
      blue[int((pixel[2] * pixel[3]) / 255)] += 1
    histogram = response.mutable_histogram()
    for value in red:
      histogram.add_red(value)
    for value in green:
      histogram.add_green(value)
    for value in blue:
      histogram.add_blue(value)

  def _Dynamic_Transform(self, request, response):
    """Trivial implementation of ImagesService::Transform.

    Based off documentation of the PIL library at
    http://www.pythonware.com/library/pil/handbook/index.htm

    Args:
      request: ImagesTransformRequest, contains image request info.
      response: ImagesTransformResponse, contains transformed image.
    """
    original_image = self._OpenImage(request.image().content())

    new_image = self._ProcessTransforms(original_image,
                                        request.transform_list())

    response_value = self._EncodeImage(new_image, request.output())
    response.mutable_image().set_content(response_value)

  def _EncodeImage(self, image, output_encoding):
    """Encode the given image and return it in string form.

    Args:
      image: PIL Image object, image to encode.
      output_encoding: ImagesTransformRequest.OutputSettings object.

    Returns:
      str with encoded image information in given encoding format.
    """
    image_string = StringIO.StringIO()

    image_encoding = "PNG"

    if (output_encoding.mime_type() == images_service_pb.OutputSettings.JPEG):
      image_encoding = "JPEG"

      image = image.convert("RGB")

    image.save(image_string, image_encoding)

    return image_string.getvalue()

  def _OpenImage(self, image):
    """Opens an image provided as a string.

    Args:
      image: image data to be opened

    Raises:
      apiproxy_errors.ApplicationError if the image cannot be opened or if it
      is an unsupported format.

    Returns:
      Image containing the image data passed in.
    """
    if not image:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.NOT_IMAGE)

    image = StringIO.StringIO(image)
    try:
      image = Image.open(image)
    except IOError:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_IMAGE_DATA)

    img_format = image.format
    if img_format not in ("BMP", "GIF", "ICO", "JPEG", "PNG", "TIFF"):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.NOT_IMAGE)
    return image

  def _ValidateCropArg(self, arg):
    """Check an argument for the Crop transform.

    Args:
      arg: float, argument to Crop transform to check.

    Raises:
      apiproxy_errors.ApplicationError on problem with argument.
    """
    if not isinstance(arg, float):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

    if not (0 <= arg <= 1.0):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

  def _CalculateNewDimensions(self,
                              current_width,
                              current_height,
                              req_width,
                              req_height):
    """Get new resize dimensions keeping the current aspect ratio.

    This uses the more restricting of the two requested values to determine
    the new ratio.

    Args:
      current_width: int, current width of the image.
      current_height: int, current height of the image.
      req_width: int, requested new width of the image.
      req_height: int, requested new height of the image.

    Returns:
      tuple (width, height) which are both ints of the new ratio.
    """

    width_ratio = float(req_width) / current_width
    height_ratio = float(req_height) / current_height

    if req_width == 0 or (width_ratio > height_ratio and req_height != 0):
      return int(height_ratio * current_width), req_height
    else:
      return req_width, int(width_ratio * current_height)

  def _Resize(self, image, transform):
    """Use PIL to resize the given image with the given transform.

    Args:
      image: PIL.Image.Image object to resize.
      transform: images_service_pb.Transform to use when resizing.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if the resize data given is bad.
    """
    width = 0
    height = 0

    if transform.has_width():
      width = transform.width()
      if width < 0 or 4000 < width:
        raise apiproxy_errors.ApplicationError(
            images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

    if transform.has_height():
      height = transform.height()
      if height < 0 or 4000 < height:
        raise apiproxy_errors.ApplicationError(
            images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

    current_width, current_height = image.size
    new_width, new_height = self._CalculateNewDimensions(current_width,
                                                         current_height,
                                                         width,
                                                         height)

    return image.resize((new_width, new_height), Image.ANTIALIAS)

  def _Rotate(self, image, transform):
    """Use PIL to rotate the given image with the given transform.

    Args:
      image: PIL.Image.Image object to rotate.
      transform: images_service_pb.Transform to use when rotating.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if the rotate data given is bad.
    """
    degrees = transform.rotate()
    if degrees < 0 or degrees % 90 != 0:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
    degrees %= 360

    degrees = 360 - degrees
    return image.rotate(degrees)

  def _Crop(self, image, transform):
    """Use PIL to crop the given image with the given transform.

    Args:
      image: PIL.Image.Image object to crop.
      transform: images_service_pb.Transform to use when cropping.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if the crop data given is bad.
    """
    left_x = 0.0
    top_y = 0.0
    right_x = 1.0
    bottom_y = 1.0

    if transform.has_crop_left_x():
      left_x = transform.crop_left_x()
      self._ValidateCropArg(left_x)

    if transform.has_crop_top_y():
      top_y = transform.crop_top_y()
      self._ValidateCropArg(top_y)

    if transform.has_crop_right_x():
      right_x = transform.crop_right_x()
      self._ValidateCropArg(right_x)

    if transform.has_crop_bottom_y():
      bottom_y = transform.crop_bottom_y()
      self._ValidateCropArg(bottom_y)

    width, height = image.size

    box = (int(transform.crop_left_x() * width),
           int(transform.crop_top_y() * height),
           int(transform.crop_right_x() * width),
           int(transform.crop_bottom_y() * height))

    return image.crop(box)

  def _ProcessTransforms(self, image, transforms):
    """Execute PIL operations based on transform values.

    Args:
      image: PIL.Image.Image instance, image to manipulate.
      trasnforms: list of ImagesTransformRequest.Transform objects.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if we are passed more than one of the same type of
      transform.
    """
    new_image = image
    if len(transforms) > images.MAX_TRANSFORMS_PER_REQUEST:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
    for transform in transforms:
      if transform.has_width() or transform.has_height():
        new_image = self._Resize(new_image, transform)

      elif transform.has_rotate():
        new_image = self._Rotate(new_image, transform)

      elif transform.has_horizontal_flip():
        new_image = new_image.transpose(Image.FLIP_LEFT_RIGHT)

      elif transform.has_vertical_flip():
        new_image = new_image.transpose(Image.FLIP_TOP_BOTTOM)

      elif (transform.has_crop_left_x() or
          transform.has_crop_top_y() or
          transform.has_crop_right_x() or
          transform.has_crop_bottom_y()):
        new_image = self._Crop(new_image, transform)

      elif transform.has_autolevels():
        logging.info("I'm Feeling Lucky autolevels will be visible once this "
                     "application is deployed.")
      else:
        logging.warn("Found no transformations found to perform.")

    return new_image