Update Google App Engine to 1.2.2 in thirdparty folder.
#!/usr/bin/env python
#
# Copyright 2007 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Stub version of the images API."""
import logging
import StringIO
try:
import PIL
from PIL import _imaging
from PIL import Image
except ImportError:
import _imaging
import Image
from google.appengine.api import apiproxy_stub
from google.appengine.api import images
from google.appengine.api.images import images_service_pb
from google.appengine.runtime import apiproxy_errors
def _ArgbToRgbaTuple(argb):
"""Convert from a single ARGB value to a tuple containing RGBA.
Args:
argb: Signed 32 bit integer containing an ARGB value.
Returns:
RGBA tuple.
"""
unsigned_argb = argb % 0x100000000
return ((unsigned_argb >> 16) & 0xFF,
(unsigned_argb >> 8) & 0xFF,
unsigned_argb & 0xFF,
(unsigned_argb >> 24) & 0xFF)
class ImagesServiceStub(apiproxy_stub.APIProxyStub):
"""Stub version of images API to be used with the dev_appserver."""
def __init__(self, service_name='images'):
"""Preloads PIL to load all modules in the unhardened environment.
Args:
service_name: Service name expected for all calls.
"""
super(ImagesServiceStub, self).__init__(service_name)
Image.init()
def _Dynamic_Composite(self, request, response):
"""Implementation of ImagesService::Composite.
Based off documentation of the PIL library at
http://www.pythonware.com/library/pil/handbook/index.htm
Args:
request: ImagesCompositeRequest, contains image request info.
response: ImagesCompositeResponse, contains transformed image.
"""
width = request.canvas().width()
height = request.canvas().height()
color = _ArgbToRgbaTuple(request.canvas().color())
canvas = Image.new("RGBA", (width, height), color)
sources = []
if (not request.canvas().width() or request.canvas().width() > 4000 or
not request.canvas().height() or request.canvas().height() > 4000):
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
if not request.image_size():
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
if not request.options_size():
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
if request.options_size() > images.MAX_COMPOSITES_PER_REQUEST:
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
for image in request.image_list():
sources.append(self._OpenImage(image.content()))
for options in request.options_list():
if (options.anchor() < images.TOP_LEFT or
options.anchor() > images.BOTTOM_RIGHT):
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
if options.source_index() >= len(sources) or options.source_index() < 0:
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
if options.opacity() < 0 or options.opacity() > 1:
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
source = sources[options.source_index()]
x_anchor = (options.anchor() % 3) * 0.5
y_anchor = (options.anchor() / 3) * 0.5
x_offset = int(options.x_offset() + x_anchor * (width - source.size[0]))
y_offset = int(options.y_offset() + y_anchor * (height - source.size[1]))
alpha = options.opacity() * 255
mask = Image.new("L", source.size, alpha)
canvas.paste(source, (x_offset, y_offset), mask)
response_value = self._EncodeImage(canvas, request.canvas().output())
response.mutable_image().set_content(response_value)
def _Dynamic_Histogram(self, request, response):
"""Trivial implementation of ImagesService::Histogram.
Based off documentation of the PIL library at
http://www.pythonware.com/library/pil/handbook/index.htm
Args:
request: ImagesHistogramRequest, contains the image.
response: ImagesHistogramResponse, contains histogram of the image.
"""
image = self._OpenImage(request.image().content())
img_format = image.format
if img_format not in ("BMP", "GIF", "ICO", "JPEG", "PNG", "TIFF"):
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.NOT_IMAGE)
image = image.convert("RGBA")
red = [0] * 256
green = [0] * 256
blue = [0] * 256
for pixel in image.getdata():
red[int((pixel[0] * pixel[3]) / 255)] += 1
green[int((pixel[1] * pixel[3]) / 255)] += 1
blue[int((pixel[2] * pixel[3]) / 255)] += 1
histogram = response.mutable_histogram()
for value in red:
histogram.add_red(value)
for value in green:
histogram.add_green(value)
for value in blue:
histogram.add_blue(value)
def _Dynamic_Transform(self, request, response):
"""Trivial implementation of ImagesService::Transform.
Based off documentation of the PIL library at
http://www.pythonware.com/library/pil/handbook/index.htm
Args:
request: ImagesTransformRequest, contains image request info.
response: ImagesTransformResponse, contains transformed image.
"""
original_image = self._OpenImage(request.image().content())
new_image = self._ProcessTransforms(original_image,
request.transform_list())
response_value = self._EncodeImage(new_image, request.output())
response.mutable_image().set_content(response_value)
def _EncodeImage(self, image, output_encoding):
"""Encode the given image and return it in string form.
Args:
image: PIL Image object, image to encode.
output_encoding: ImagesTransformRequest.OutputSettings object.
Returns:
str with encoded image information in given encoding format.
"""
image_string = StringIO.StringIO()
image_encoding = "PNG"
if (output_encoding.mime_type() == images_service_pb.OutputSettings.JPEG):
image_encoding = "JPEG"
image = image.convert("RGB")
image.save(image_string, image_encoding)
return image_string.getvalue()
def _OpenImage(self, image):
"""Opens an image provided as a string.
Args:
image: image data to be opened
Raises:
apiproxy_errors.ApplicationError if the image cannot be opened or if it
is an unsupported format.
Returns:
Image containing the image data passed in.
"""
if not image:
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.NOT_IMAGE)
image = StringIO.StringIO(image)
try:
image = Image.open(image)
except IOError:
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_IMAGE_DATA)
img_format = image.format
if img_format not in ("BMP", "GIF", "ICO", "JPEG", "PNG", "TIFF"):
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.NOT_IMAGE)
return image
def _ValidateCropArg(self, arg):
"""Check an argument for the Crop transform.
Args:
arg: float, argument to Crop transform to check.
Raises:
apiproxy_errors.ApplicationError on problem with argument.
"""
if not isinstance(arg, float):
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
if not (0 <= arg <= 1.0):
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
def _CalculateNewDimensions(self,
current_width,
current_height,
req_width,
req_height):
"""Get new resize dimensions keeping the current aspect ratio.
This uses the more restricting of the two requested values to determine
the new ratio.
Args:
current_width: int, current width of the image.
current_height: int, current height of the image.
req_width: int, requested new width of the image.
req_height: int, requested new height of the image.
Returns:
tuple (width, height) which are both ints of the new ratio.
"""
width_ratio = float(req_width) / current_width
height_ratio = float(req_height) / current_height
if req_width == 0 or (width_ratio > height_ratio and req_height != 0):
return int(height_ratio * current_width), req_height
else:
return req_width, int(width_ratio * current_height)
def _Resize(self, image, transform):
"""Use PIL to resize the given image with the given transform.
Args:
image: PIL.Image.Image object to resize.
transform: images_service_pb.Transform to use when resizing.
Returns:
PIL.Image.Image with transforms performed on it.
Raises:
BadRequestError if the resize data given is bad.
"""
width = 0
height = 0
if transform.has_width():
width = transform.width()
if width < 0 or 4000 < width:
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
if transform.has_height():
height = transform.height()
if height < 0 or 4000 < height:
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
current_width, current_height = image.size
new_width, new_height = self._CalculateNewDimensions(current_width,
current_height,
width,
height)
return image.resize((new_width, new_height), Image.ANTIALIAS)
def _Rotate(self, image, transform):
"""Use PIL to rotate the given image with the given transform.
Args:
image: PIL.Image.Image object to rotate.
transform: images_service_pb.Transform to use when rotating.
Returns:
PIL.Image.Image with transforms performed on it.
Raises:
BadRequestError if the rotate data given is bad.
"""
degrees = transform.rotate()
if degrees < 0 or degrees % 90 != 0:
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
degrees %= 360
degrees = 360 - degrees
return image.rotate(degrees)
def _Crop(self, image, transform):
"""Use PIL to crop the given image with the given transform.
Args:
image: PIL.Image.Image object to crop.
transform: images_service_pb.Transform to use when cropping.
Returns:
PIL.Image.Image with transforms performed on it.
Raises:
BadRequestError if the crop data given is bad.
"""
left_x = 0.0
top_y = 0.0
right_x = 1.0
bottom_y = 1.0
if transform.has_crop_left_x():
left_x = transform.crop_left_x()
self._ValidateCropArg(left_x)
if transform.has_crop_top_y():
top_y = transform.crop_top_y()
self._ValidateCropArg(top_y)
if transform.has_crop_right_x():
right_x = transform.crop_right_x()
self._ValidateCropArg(right_x)
if transform.has_crop_bottom_y():
bottom_y = transform.crop_bottom_y()
self._ValidateCropArg(bottom_y)
width, height = image.size
box = (int(transform.crop_left_x() * width),
int(transform.crop_top_y() * height),
int(transform.crop_right_x() * width),
int(transform.crop_bottom_y() * height))
return image.crop(box)
def _ProcessTransforms(self, image, transforms):
"""Execute PIL operations based on transform values.
Args:
image: PIL.Image.Image instance, image to manipulate.
trasnforms: list of ImagesTransformRequest.Transform objects.
Returns:
PIL.Image.Image with transforms performed on it.
Raises:
BadRequestError if we are passed more than one of the same type of
transform.
"""
new_image = image
if len(transforms) > images.MAX_TRANSFORMS_PER_REQUEST:
raise apiproxy_errors.ApplicationError(
images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
for transform in transforms:
if transform.has_width() or transform.has_height():
new_image = self._Resize(new_image, transform)
elif transform.has_rotate():
new_image = self._Rotate(new_image, transform)
elif transform.has_horizontal_flip():
new_image = new_image.transpose(Image.FLIP_LEFT_RIGHT)
elif transform.has_vertical_flip():
new_image = new_image.transpose(Image.FLIP_TOP_BOTTOM)
elif (transform.has_crop_left_x() or
transform.has_crop_top_y() or
transform.has_crop_right_x() or
transform.has_crop_bottom_y()):
new_image = self._Crop(new_image, transform)
elif transform.has_autolevels():
logging.info("I'm Feeling Lucky autolevels will be visible once this "
"application is deployed.")
else:
logging.warn("Found no transformations found to perform.")
return new_image