Merged Madhu and Mainline branches.
Binary file day1/data/filter.png has changed
--- a/day1/session1.tex Wed Oct 28 16:01:13 2009 +0530
+++ b/day1/session1.tex Wed Oct 28 16:01:29 2009 +0530
@@ -129,15 +129,11 @@
\item[Session 2] Sat 10:05--11:05
\item[Session 3] Sat 11:20--12:20
\item[Session 4] Sat 12:25--13:25
- \item Quiz -1 Sat 14:25--14:40
+ \item[Quiz -1] Sat 14:25--14:40
\item[Session 5] Sat 14:40--15:40
\item[Session 6] Sat 15:55--16:55
- \item Quiz -2 Sat 17:00--17:15
+ \item[Quiz -2] Sat 17:00--17:15
\end{description}
-
- \begin{block}{Goal of the workshop}
- At the end of this program, successful participants will be able to use python as their scripting and problem solving language. Aimed at Engg. students--focus on basic numerics and plotting-- but should serve a similar purpose for others.
- \end{block}
\end{frame}
\begin{frame}
@@ -147,13 +143,15 @@
\item[Session 2] Sun 10:05--11:05
\item[Session 3] Sun 11:20--12:20
\item[Session 4] Sun 12:25--13:25
- \item Quiz -1 Sun 14:25--14:40
+ \item[Quiz -1] Sun 14:25--14:40
\item[Session 5] Sun 14:40--15:40
\item[Session 6] Sun 15:55--16:55
- \item Quiz -2 Sun 17:00--17:15
+ \item[Quiz -2] Sun 17:00--17:15
\end{description}
+\end{frame}
-\begin{frame}{About the Workshop}
+\begin{frame}
+ \frametitle{About the Workshop}
\begin{block}{Intended Audience}
\begin{itemize}
\item Engg., Mathematics and Science teachers.
@@ -161,7 +159,7 @@
\end{itemize}
\end{block}
- \begin{block}{Goal:}
+ \begin{block}{Goal}
Successful participants will be able to
\begin{itemize}
\item use Python as their scripting and problem solving language.
@@ -170,15 +168,18 @@
\end{block}
\end{frame}
-\end{frame}
-\begin{frame}{Checklist}
+
+\begin{frame}
+\frametitle{Bucketlist}
\begin{block}{IPython}
Type ipython at the command line. Is it available?
\end{block}
\begin{block}{Editor}
We recommend scite.
\end{block}
- \end{description}
+ \begin{block}{Data files}
+ Make sure you have all data files.
+ \end{block}
\end{frame}
\begin{frame}[fragile]
@@ -222,12 +223,12 @@
\includegraphics[height=2in, interpolate=true]{data/firstplot}
\column{0.8\textwidth}
\begin{block}{}
- \small
+ \begin{small}
\begin{lstlisting}
In []: x = linspace(0, 2*pi, 51)
In []: plot(x, sin(x))
\end{lstlisting}
- \small
+ \end{small}
\end{block}
\end{columns}
\end{frame}
--- a/day1/session5.tex Wed Oct 28 16:01:13 2009 +0530
+++ b/day1/session5.tex Wed Oct 28 16:01:29 2009 +0530
@@ -79,7 +79,7 @@
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
-\date[] {31, October 2009\\Day 1, Session 4}
+\date[] {31, October 2009\\Day 1, Session 5}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
@@ -96,13 +96,13 @@
\end{frame}
}
-%%\AtBeginSection[]
-%%{
- %%\begin{frame}<beamer>
-%% \frametitle{Outline}
- %% \tableofcontents[currentsection,currentsubsection]
- %%\end{frame}
-%%}
+\AtBeginSection[]
+{
+ \begin{frame}<beamer>
+ \frametitle{Outline}
+ \tableofcontents[currentsection,currentsubsection]
+ \end{frame}
+}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
@@ -124,9 +124,203 @@
% \pausesections
\end{frame}
-\section{Integration}
+\section{Interpolation}
+
+\begin{frame}[fragile]
+\frametitle{Interpolation}
+\begin{itemize}
+\item Let us begin with interpolation
+\item Let's use the L and T arrays and interpolate this data to obtain data at new points
+\end{itemize}
+\begin{lstlisting}
+In []: L = []
+In []: T = []
+In []: for line in open('pendulum.txt'):
+ l, t = line.split()
+ L.append(float(l))
+ T.append(float(t))
+In []: L = array(L)
+In []: T = array(T)
+\end{lstlisting}
+\end{frame}
+
+%% \begin{frame}[fragile]
+%% \frametitle{Interpolation \ldots}
+%% \begin{small}
+%% \typ{In []: from scipy.interpolate import interp1d}
+%% \end{small}
+%% \begin{itemize}
+%% \item The \typ{interp1d} function returns a function
+%% \begin{lstlisting}
+%% In []: f = interp1d(L, T)
+%% \end{lstlisting}
+%% \item Functions can be assigned to variables
+%% \item This function interpolates between known data values to obtain unknown
+%% \end{itemize}
+%% \end{frame}
+
+%% \begin{frame}[fragile]
+%% \frametitle{Interpolation \ldots}
+%% \begin{lstlisting}
+%% In []: Ln = arange(0.1,0.99,0.005)
+%% # Interpolating!
+%% # The new values in range of old data
+%% In []: plot(L, T, 'o', Ln, f(Ln), '-')
+%% In []: f = interp1d(L, T, kind='cubic')
+%% # When kind not specified, it's linear
+%% # Others are ...
+%% # 'nearest', 'zero',
+%% # 'slinear', 'quadratic'
+%% \end{lstlisting}
+%% \end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Spline Interpolation}
+\begin{small}
+\begin{lstlisting}
+In []: from scipy.interpolate import splrep
+In []: from scipy.interpolate import splev
+\end{lstlisting}
+\end{small}
+\begin{itemize}
+\item Involves two steps
+ \begin{enumerate}
+ \item Find out the spline curve, coefficients
+ \item Evaluate the spline at new points
+ \end{enumerate}
+\end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{\typ{splrep}}
+To find the B-spline representation
+\begin{lstlisting}
+In []: tck = splrep(L, T)
+\end{lstlisting}
+Returns a tuple containing
+\begin{enumerate}
+\item the vector of knots,
+\item the B-spline coefficients
+\item the degree of the spline (default=3)
+\end{enumerate}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{\typ{splev}}
+To Evaluate a B-spline and it's derivatives
+\begin{lstlisting}
+In []: Lnew = arange(0.1,1,0.005)
+In []: Tnew = splev(Lnew, tck)
+
+#To obtain derivatives of the spline
+#use der=1, 2,.. for 1st, 2nd,.. order
+In []: Tnew = splev(Lnew, tck, der=1)
+\end{lstlisting}
+\end{frame}
-\subsection{Quadrature}
+%% \begin{frame}[fragile]
+%% \frametitle{Interpolation \ldots}
+%% \begin{itemize}
+%% \item
+%% \end{itemize}
+%% \end{frame}
+
+\section{Differentiation}
+
+\begin{frame}[fragile]
+\frametitle{Numerical Differentiation}
+\begin{itemize}
+\item Given function $f(x)$ or data points $y=f(x)$
+\item We wish to calculate $f^{'}(x)$ at points $x$
+\item Taylor series - finite difference approximations
+\end{itemize}
+\begin{center}
+\begin{tabular}{l l}
+$f(x+h)=f(x)+h.f^{'}(x)$ &Forward \\
+$f(x-h)=f(x)-h.f^{'}(x)$ &Backward
+\end{tabular}
+\end{center}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Forward Difference}
+\begin{lstlisting}
+In []: x = linspace(0, 2*pi, 100)
+In []: y = sin(x)
+In []: deltax = x[1] - x[0]
+\end{lstlisting}
+Obtain the finite forward difference of y
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Forward Difference \ldots}
+\begin{lstlisting}
+In []: fD = (y[1:] - y[:-1]) / deltax
+In []: plot(x, y, x[:-1], fD)
+\end{lstlisting}
+\begin{center}
+ \includegraphics[height=2in, interpolate=true]{data/fwdDiff}
+\end{center}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Example}
+\begin{itemize}
+\item Given x, y positions of a particle in \typ{pos.txt}
+\item Find velocity \& acceleration in x, y directions
+\end{itemize}
+\small{
+\begin{center}
+\begin{tabular}{| c | c | c |}
+\hline
+$X$ & $Y$ \\ \hline
+0. & 0.\\ \hline
+0.25 & 0.47775\\ \hline
+0.5 & 0.931\\ \hline
+0.75 & 1.35975\\ \hline
+1. & 1.764\\ \hline
+1.25 & 2.14375\\ \hline
+\vdots & \vdots\\ \hline
+\end{tabular}
+\end{center}}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Example \ldots}
+\begin{itemize}
+\item Read the file
+\item Obtain an array of x, y
+\item Obtain velocity and acceleration
+\item use \typ{deltaT = 0.05}
+\end{itemize}
+\begin{lstlisting}
+In []: X = []
+In []: Y = []
+In []: for line in open('location.txt'):
+ .... points = line.split()
+ .... X.append(float(points[0]))
+ .... Y.append(float(points[1]))
+In []: S = array([X, Y])
+\end{lstlisting}
+\end{frame}
+
+
+\begin{frame}[fragile]
+\frametitle{Example \ldots}
+\begin{itemize}
+\item use \typ{deltaT = 0.05}
+\end{itemize}
+\begin{lstlisting}
+In []: deltaT = 0.05
+
+In []: v = (S[:,1:]-S[:,:-1])/deltaT
+
+In []: a = (v[:,1:]-v[:,:-1])/deltaT
+\end{lstlisting}
+Try Plotting the position, velocity \& acceleration.
+\end{frame}
+
+\section{Quadrature}
\begin{frame}[fragile]
\frametitle{Quadrature}
@@ -135,7 +329,9 @@
\item Area under $(sin(x) + x^2)$ in $(0,1)$
\item scipy has functions to do that
\end{itemize}
-\small{\typ{In []: from scipy.integrate import quad}}
+\begin{small}
+ \typ{In []: from scipy.integrate import quad}
+\end{small}
\begin{itemize}
\item Inputs - function to integrate, limits
\end{itemize}
@@ -143,12 +339,15 @@
In []: x = 0
In []: quad(sin(x)+x**2, 0, 1)
\end{lstlisting}
+\begin{small}
\alert{\typ{error:}}
\typ{First argument must be a callable function.}
+\end{small}
\end{frame}
\begin{frame}[fragile]
\frametitle{Functions - Definition}
+We have been using them all along. Now let's see how to define them.
\begin{lstlisting}
In []: def f(x):
return sin(x)+x**2
@@ -156,6 +355,7 @@
\end{lstlisting}
\begin{itemize}
\item \typ{def}
+\item name
\item arguments
\item \typ{return}
\end{itemize}
@@ -175,50 +375,7 @@
In []: f(1)
Out[]: 1.8414709848078965
\end{lstlisting}
-\end{frame}
-
-
-\begin{frame}[fragile]
-\frametitle{Functions - Default Arguments}
-\begin{lstlisting}
-In []: def f(x=1):
- return sin(x)+x**2
-In []: f(10)
-Out[]: 99.455978889110625
-In []: f(1)
-Out[]: 1.8414709848078965
-In []: f()
-Out[]: 1.8414709848078965
-\end{lstlisting}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Functions - Keyword Arguments}
-\begin{lstlisting}
-In []: def f(x=1, y=pi):
- return sin(y)+x**2
-In []: f()
-Out[]: 1.0000000000000002
-In []: f(2)
-Out[]: 4.0
-In []: f(y=2)
-Out[]: 1.9092974268256817
-In []: f(y=pi/2,x=0)
-Out[]: 1.0
-\end{lstlisting}
-\end{frame}
-
-\begin{frame}[fragile]
- \frametitle{More on functions}
- \begin{itemize}
- \item Scope of variables in the function is local
- \item Mutable items are \alert{passed by reference}
- \item First line after definition may be a documentation string
- (\alert{recommended!})
- \item Function definition and execution defines a name bound to the
- function
- \item You \emph{can} assign a variable to a function!
- \end{itemize}
+More on Functions later \ldots
\end{frame}
\begin{frame}[fragile]
@@ -228,74 +385,16 @@
\end{lstlisting}
Returns the integral and an estimate of the absolute error in the result.
\begin{itemize}
-\item Use \typ{dblquad} for Double integrals
+\item Look at \typ{dblquad} for Double integrals
\item Use \typ{tplquad} for Triple integrals
\end{itemize}
\end{frame}
-\subsection{ODEs}
-
-\begin{frame}[fragile]
-\frametitle{ODE Integration}
-We shall use the simple ODE of a simple pendulum.
-\begin{equation*}
-\ddot{\theta} = -\frac{g}{L}sin(\theta)
-\end{equation*}
-\begin{itemize}
-\item This equation can be written as a system of two first order ODEs
-\end{itemize}
-\begin{align}
-\dot{\theta} &= \omega \\
-\dot{\omega} &= -\frac{g}{L}sin(\theta) \\
- \text{At}\ t &= 0 : \nonumber \\
- \theta = \theta_0\quad & \&\quad \omega = 0 \nonumber
-\end{align}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Solving ODEs using SciPy}
-\begin{itemize}
-\item We use the \typ{odeint} function from scipy to do the integration
-\item Define a function as below
-\end{itemize}
-\begin{lstlisting}
-In []: def pend_int(unknown, t, p):
- .... theta, omega = unknown
- .... g, L = p
- .... f=[omega, -(g/L)*sin(theta)]
- .... return f
- ....
-\end{lstlisting}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Solving ODEs using SciPy \ldots}
-\begin{itemize}
-\item \typ{t} is the time variable \\
-\item \typ{p} has the constants \\
-\item \typ{initial} has the initial values
-\end{itemize}
-\begin{lstlisting}
-In []: t = linspace(0, 10, 101)
-In []: p=(-9.81, 0.2)
-In []: initial = [10*2*pi/360, 0]
-\end{lstlisting}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Solving ODEs using SciPy \ldots}
-
-\small{\typ{In []: from scipy.integrate import odeint}}
-\begin{lstlisting}
-In []: pend_sol = odeint(pend_int,
- initial,t,
- args=(p,))
-\end{lstlisting}
-\end{frame}
-
\begin{frame}
\frametitle{Things we have learned}
\begin{itemize}
+ \item Interpolation
+ \item Differentiation
\item Functions
\begin{itemize}
\item Definition
--- a/day1/session6.tex Wed Oct 28 16:01:13 2009 +0530
+++ b/day1/session6.tex Wed Oct 28 16:01:29 2009 +0530
@@ -73,7 +73,7 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
-\title[]{Finding Roots}
+\title[]{ODEs \& Finding Roots}
\author[FOSSEE] {FOSSEE}
@@ -123,6 +123,68 @@
%% % You might wish to add the option [pausesections]
%% \end{frame}
+\section{ODEs}
+
+\begin{frame}[fragile]
+\frametitle{ODE Integration}
+We shall use the simple ODE of a simple pendulum.
+\begin{equation*}
+\ddot{\theta} = -\frac{g}{L}sin(\theta)
+\end{equation*}
+\begin{itemize}
+\item This equation can be written as a system of two first order ODEs
+\end{itemize}
+\begin{align}
+\dot{\theta} &= \omega \\
+\dot{\omega} &= -\frac{g}{L}sin(\theta) \\
+ \text{At}\ t &= 0 : \nonumber \\
+ \theta = \theta_0\quad & \&\quad \omega = 0 \nonumber
+\end{align}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Solving ODEs using SciPy}
+\begin{itemize}
+\item We use the \typ{odeint} function from scipy to do the integration
+\item Define a function as below
+\end{itemize}
+\begin{lstlisting}
+In []: def pend_int(unknown, t, p):
+ .... theta, omega = unknown
+ .... g, L = p
+ .... f=[omega, -(g/L)*sin(theta)]
+ .... return f
+ ....
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Solving ODEs using SciPy \ldots}
+\begin{itemize}
+\item \typ{t} is the time variable \\
+\item \typ{p} has the constants \\
+\item \typ{initial} has the initial values
+\end{itemize}
+\begin{lstlisting}
+In []: t = linspace(0, 10, 101)
+In []: p=(-9.81, 0.2)
+In []: initial = [10*2*pi/360, 0]
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Solving ODEs using SciPy \ldots}
+\begin{small}
+ \typ{In []: from scipy.integrate import odeint}
+\end{small}
+\begin{lstlisting}
+In []: pend_sol = odeint(pend_int,
+ initial,t,
+ args=(p,))
+\end{lstlisting}
+\end{frame}
+
+\section{Finding Roots}
\begin{frame}[fragile]
\frametitle{Roots of $f(x)=0$}
@@ -136,8 +198,8 @@
\begin{frame}[fragile]
\frametitle{Initial Estimates}
\begin{itemize}
-\item Find the roots of $cosx-x^2$ between $-\pi/2$ and $\pi/2$
-\item We shall use a crude method to get an initial estimate first
+\item Find roots of $cosx-x^2$ in $(-\pi/2, \pi/2)$
+\item How to get a rough initial estimate?
\end{itemize}
\begin{enumerate}
\item Check for change of signs of $f(x)$ in the given interval
@@ -288,15 +350,28 @@
\begin{frame}[fragile]
\frametitle{Scipy Methods \dots}
-\small{
+\begin{small}
\begin{lstlisting}
In []: from scipy.optimize import fixed_point
In []: from scipy.optimize import bisect
In []: from scipy.optimize import newton
-\end{lstlisting}}
+\end{lstlisting}
+\end{small}
\end{frame}
+\begin{frame}
+ \frametitle{Things we have learned}
+ \begin{itemize}
+ \item Solving ODEs
+ \item Finding Roots
+ \begin{itemize}
+ \item Estimating Interval
+ \item Newton Raphson
+ \item Scipy methods
+ \end{itemize}
+ \end{itemize}
+\end{frame}
\end{document}
Binary file day2/DebugginDiagram.png has changed
--- a/day2/session3.tex Wed Oct 28 16:01:13 2009 +0530
+++ b/day2/session3.tex Wed Oct 28 16:01:29 2009 +0530
@@ -97,7 +97,7 @@
% Title page
\title[]{3D data Visualization}
-\author[FOSSEE Team] {FOSSEE}
+\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {1, November 2009\\Day 2, Session 3}
@@ -157,22 +157,22 @@
\end{frame}
-\begin{frame}
- \frametitle{Is this new?}
- \begin{center}
- We have moved from:
- \end{center}
- \begin{columns}
- \column{}
- \hspace*{-1in}
- \includegraphics[width=1.75in,height=1.75in, interpolate=true]{data/3832}
- \column{}\hspace*{-0.25in}
- To
- \column{}
- \hspace*{-1in}
- \includegraphics[width=1.75in, height=1.75in, interpolate=true]{data/torus}
- \end{columns}
-\end{frame}
+%% \begin{frame}
+%% \frametitle{Is this new?}
+%% \begin{center}
+%% We have moved from:
+%% \end{center}
+%% \begin{columns}
+%% \column{}
+%% \hspace*{-1in}
+%% \includegraphics[width=1.75in,height=1.75in, interpolate=true]{data/3832}
+%% \column{}\hspace*{-0.25in}
+%% To
+%% \column{}
+%% \hspace*{-1in}
+%% \includegraphics[width=1.75in, height=1.75in, interpolate=true]{data/torus}
+%% \end{columns}
+%% \end{frame}
\begin{frame}
\frametitle{3D visualization}
@@ -238,7 +238,7 @@
\frametitle{Using mlab}
\begin{lstlisting}
->>> from enthought.mayavi import mlab
+In []:from enthought.mayavi import mlab
\end{lstlisting}
\vspace*{0.5in}
@@ -248,9 +248,9 @@
\vspace*{0.25in}
\begin{lstlisting}
->>> mlab.test_<TAB>
->>> mlab.test_contour3d()
->>> mlab.test_contour3d??
+In []: mlab.test_<TAB>
+In []: mlab.test_contour3d()
+In []: mlab.test_contour3d??
\end{lstlisting}
\end{frame}
@@ -279,12 +279,12 @@
\end{columns}
\begin{lstlisting}
->>> from numpy import *
->>> t = linspace(0, 2*pi, 50)
->>> u = cos(t)*pi
->>> x, y, z = sin(u), cos(u), sin(t)
+In []: from numpy import *
+In []: t = linspace(0, 2*pi, 50)
+In []: u = cos(t) * pi
+in []: x, y, z = sin(u), cos(u), sin(t)
\end{lstlisting}
- \emphbar{\PythonCode{>>> mlab.points3d(x, y, z)}}
+ \emphbar{\PythonCode{In []: mlab.points3d(x, y, z)}}
\end{frame}
\begin{frame}
@@ -294,7 +294,7 @@
\column{0.5\textwidth}
\pgfimage[width=2.5in]{MEDIA/m2/mlab/plot3d_ex}
\end{columns}
- \emphbar{\PythonCode{>>> mlab.plot3d(x, y, z, t)}}
+ \emphbar{\PythonCode{In []: mlab.plot3d(x, y, z, t)}}
Plots lines between the points
@@ -308,11 +308,11 @@
\pgfimage[width=2in]{MEDIA/m2/mlab/surf_ex}
\end{columns}
\begin{lstlisting}
->>> x, y = mgrid[-3:3:100j,-3:3:100j]
->>> z = sin(x*x + y*y)
+In []: x, y = mgrid[-3:3:100j,-3:3:100j]
+In []: z = sin(x*x + y*y)
\end{lstlisting}
- \emphbar{\PythonCode{>>> mlab.surf(x, y, z)}}
+ \emphbar{\PythonCode{In []: mlab.surf(x, y, z)}}
\alert{Assumes the points are rectilinear}
@@ -322,18 +322,18 @@
\myemph{\Large 2D data: \texttt{mlab.mesh}}
\vspace*{0.25in}
- \emphbar{\PythonCode{>>> mlab.mesh(x, y, z)}}
+ \emphbar{\PythonCode{In []: mlab.mesh(x, y, z)}}
\alert{Points needn't be regular}
\vspace*{0.25in}
\begin{lstlisting}
->>> phi, theta = numpy.mgrid[0:pi:20j,
+In []: phi, theta = numpy.mgrid[0:pi:20j,
... 0:2*pi:20j]
->>> x = sin(phi)*cos(theta)
->>> y = sin(phi)*sin(theta)
->>> z = cos(phi)
->>> mlab.mesh(x, y, z,
+In []: x = sin(phi)*cos(theta)
+In []: y = sin(phi)*sin(theta)
+In []: z = cos(phi)
+In []: mlab.mesh(x, y, z,
... representation=
... 'wireframe')
\end{lstlisting}
@@ -349,10 +349,10 @@
\pgfimage[width=1.5in]{MEDIA/m2/mlab/contour3d}\\
\end{columns}
\begin{lstlisting}
->>> x, y, z = ogrid[-5:5:64j,
+In []: x, y, z = ogrid[-5:5:64j,
... -5:5:64j,
... -5:5:64j]
->>> mlab.contour3d(x*x*0.5 + y*y +
+In []: mlab.contour3d(x*x*0.5 + y*y +
z*z*2)
\end{lstlisting}
\end{frame}
@@ -365,7 +365,7 @@
\pgfimage[width=2in]{MEDIA/m2/mlab/quiver3d_ex}\\
\begin{lstlisting}
->>> mlab.test_quiver3d()
+In []: mlab.test_quiver3d()
\end{lstlisting}
\emphbar{\PythonCode{obj = mlab.quiver3d(x, y, z, u, v, w)}}
@@ -511,6 +511,15 @@
\end{lstlisting}
\end{frame}
-
+
+\begin{frame}
+ \frametitle{We have covered:}
+ \begin{itemize}
+ \item Need of visualization.
+ \item Using mlab to create 3 D plots.
+ \item Mayavi Toolkit.
+ \end{itemize}
+\end{frame}
+
\end{document}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/day2/session4.tex Wed Oct 28 16:01:29 2009 +0530
@@ -0,0 +1,386 @@
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Tutorial slides on Python.
+%
+% Author: Prabhu Ramachandran <prabhu at aero.iitb.ac.in>
+% Copyright (c) 2005-2009, Prabhu Ramachandran
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\documentclass[compress,14pt]{beamer}
+% \documentclass[handout]{beamer}
+% \usepackage{pgfpages}
+% \pgfpagesuselayout{4 on 1}[a4paper,border, shrink=5mm,landscape]
+\usepackage{tikz}
+\newcommand{\hyperlinkmovie}{}
+%\usepackage{movie15}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Note that in presentation mode
+% \paperwidth 364.19536pt
+% \paperheight 273.14662pt
+% h/w = 0.888
+
+
+\mode<presentation>
+{
+ \usetheme{Warsaw}
+ %\usetheme{Boadilla}
+ %\usetheme{default}
+ \useoutertheme{split}
+ \setbeamercovered{transparent}
+}
+
+% To remove navigation symbols
+\setbeamertemplate{navigation symbols}{}
+
+\usepackage{amsmath}
+\usepackage[english]{babel}
+\usepackage[latin1]{inputenc}
+\usepackage{times}
+\usepackage[T1]{fontenc}
+
+% Taken from Fernando's slides.
+\usepackage{ae,aecompl}
+\usepackage{mathpazo,courier,euler}
+\usepackage[scaled=.95]{helvet}
+\usepackage{pgf}
+
+\definecolor{darkgreen}{rgb}{0,0.5,0}
+
+\usepackage{listings}
+\lstset{language=Python,
+ basicstyle=\ttfamily\bfseries,
+ commentstyle=\color{red}\itshape,
+ stringstyle=\color{darkgreen},
+ showstringspaces=false,
+ keywordstyle=\color{blue}\bfseries}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% My Macros
+\setbeamercolor{postit}{bg=yellow,fg=black}
+\setbeamercolor{emphbar}{bg=blue!20, fg=black}
+\newcommand{\emphbar}[1]
+{\begin{beamercolorbox}[rounded=true]{emphbar}
+ {#1}
+ \end{beamercolorbox}
+}
+%{\centerline{\fcolorbox{gray!50} {blue!10}{
+%\begin{minipage}{0.9\linewidth}
+% {#1}
+%\end{minipage}
+% }}}
+
+\newcommand{\myemph}[1]{\structure{\emph{#1}}}
+\newcommand{\PythonCode}[1]{\lstinline{#1}}
+
+\newcommand{\tvtk}{\texttt{tvtk}}
+\newcommand{\mlab}{\texttt{mlab}}
+
+\newcounter{time}
+\setcounter{time}{0}
+\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\vspace*{0.1in}\tiny \thetime\ m}}
+
+\newcommand\BackgroundPicture[1]{%
+ \setbeamertemplate{background}{%
+ \parbox[c][\paperheight]{\paperwidth}{%
+ \vfill \hfill
+ \hfill \vfill
+}}}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Configuring the theme
+%\setbeamercolor{normal text}{fg=white}
+%\setbeamercolor{background canvas}{bg=black}
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Title page
+\title[]{Debugging and \\Test Driven Approach}
+
+\author[FOSSEE] {FOSSEE}
+
+\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
+\date[] {11, October 2009}
+\date[] % (optional)
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%\pgfdeclareimage[height=0.75cm]{iitblogo}{iitblogo}
+%\logo{\pgfuseimage{iitblogo}}
+
+\AtBeginSection[]
+{
+ \begin{frame}<beamer>
+ \frametitle{Outline}
+ \Large
+ \tableofcontents[currentsection,currentsubsection]
+ \end{frame}
+}
+
+%% Delete this, if you do not want the table of contents to pop up at
+%% the beginning of each subsection:
+\AtBeginSubsection[]
+{
+ \begin{frame}<beamer>
+ \frametitle{Outline}
+ \tableofcontents[currentsection,currentsubsection]
+ \end{frame}
+}
+
+\AtBeginSection[]
+{
+ \begin{frame}<beamer>
+ \frametitle{Outline}
+ \tableofcontents[currentsection,currentsubsection]
+ \end{frame}
+}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% DOCUMENT STARTS
+\begin{document}
+
+\begin{frame}
+ \maketitle
+\end{frame}
+
+
+\section{Debugging}
+\subsection{Errors and Exceptions}
+\begin{frame}[fragile]
+ \frametitle{Errors}
+ \begin{lstlisting}
+>>> while True print 'Hello world'
+ \end{lstlisting}
+\pause
+ \begin{lstlisting}
+ File "<stdin>", line 1, in ?
+ while True print 'Hello world'
+ ^
+SyntaxError: invalid syntax
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Exceptions}
+ \begin{lstlisting}
+>>> print spam
+\end{lstlisting}
+\pause
+\begin{lstlisting}
+Traceback (most recent call last):
+ File "<stdin>", line 1, in <module>
+NameError: name 'spam' is not defined
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Exceptions}
+ \begin{lstlisting}
+>>> 1 / 0
+\end{lstlisting}
+\pause
+\begin{lstlisting}
+Traceback (most recent call last):
+ File "<stdin>", line 1, in <module>
+ZeroDivisionError: integer division
+or modulo by zero
+\end{lstlisting}
+\end{frame}
+
+\subsection{Strategy}
+\begin{frame}[fragile]
+ \frametitle{Debugging effectively}
+ \begin{itemize}
+ \item \kwrd{print} based strategy
+ \item Process:
+ \end{itemize}
+\begin{center}
+\pgfimage[interpolate=true,width=5cm,height=5cm]{DebugginDiagram.png}
+\end{center}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Debugging effectively}
+ \begin{itemize}
+ \item Using \typ{\%debug} in IPython
+ \end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Debugging in IPython}
+\small
+\begin{lstlisting}
+In [1]: import mymodule
+In [2]: mymodule.test()
+---------------------------------------------
+NameError Traceback (most recent call last)
+<ipython console> in <module>()
+mymodule.py in test()
+ 1 def test():
+----> 2 print spam
+NameError: global name 'spam' is not defined
+
+In [3]: %debug
+> mymodule.py(2)test()
+ 0 print spam
+ipdb>
+\end{lstlisting}
+\inctime{15}
+\end{frame}
+
+\subsection{Exercise}
+\begin{frame}[fragile]
+\frametitle{Debugging: Exercise}
+\small
+\begin{lstlisting}
+import keyword
+f = open('/path/to/file')
+
+freq = {}
+for line in f:
+ words = line.split()
+ for word in words:
+ key = word.strip(',.!;?()[]: ')
+ if keyword.iskeyword(key):
+ value = freq[key]
+ freq[key] = value + 1
+
+print freq
+\end{lstlisting}
+\inctime{10}
+\end{frame}
+
+%% \begin{frame}
+%% \frametitle{Testing}
+
+%% \begin{itemize}
+%% \item Writing tests is really simple!
+
+%% \item Using nose.
+
+%% \item Example!
+%% \end{itemize}
+%% \end{frame}
+
+\section{Test Driven Approach}
+\begin{frame}
+ \frametitle{Need of Testing!}
+
+ \begin{itemize}
+ \item Quality
+ \item Regression
+ \item Documentation
+ \end{itemize}
+ %% \vspace*{0.25in}
+ %% \emphbar{It is to assure that section of code is working as it is supposed to work}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Example}
+ \begin{block}{Problem Statement}
+ Write a function to check whether a given input
+ string is a palindrome.
+ \end{block}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Function: palindrome.py}
+\begin{lstlisting}
+def is_palindrome(input_str):
+ return input_str == input_str[::-1]
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Test for the palindrome: palindrome.py}
+\begin{lstlisting}
+from plaindrome import is_palindrome
+def test_function_normal_words():
+ input = "noon"
+ assert is_palindrome(input) == True
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Running the tests.}
+\begin{lstlisting}
+$ nosetests test.py
+.
+----------------------------------------------
+Ran 1 test in 0.001s
+
+OK
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Exercise: Including new tests.}
+\begin{lstlisting}
+def test_function_ignore_cases_words():
+ input = "Noon"
+ assert is_palindrome(input) == True
+\end{lstlisting}
+ \vspace*{0.25in}
+ Check\\
+ \PythonCode{$ nosetests test.py} \\
+ \begin{block}{Task}
+ Tweak the code to pass this test.
+ \end{block}
+\end{frame}
+
+%\begin{frame}[fragile]
+% \frametitle{Lets write some test!}
+%\begin{lstlisting}
+%#for form of equation y=mx+c
+%#given m and c for two equation,
+%#finding the intersection point.
+%def intersect(m1,c1,m2,c2):
+% x = (c2-c1)/(m1-m2)
+% y = m1*x+c1
+% return (x,y)
+%\end{lstlisting}
+%
+%Create a simple test for this
+%
+%function which will make it fail.
+%
+%\inctime{15}
+%\end{frame}
+%
+
+\begin{frame}[fragile]
+ \frametitle{Exercise}
+ Based on Euclid's algorithm:
+ \begin{center}
+ $gcd(a,b)=gcd(b,b\%a)$
+ \end{center}
+ gcd function can be written as:
+ \begin{lstlisting}
+ def gcd(a, b):
+ if a%b == 0: return b
+ return gcd(b, a%b)
+ \end{lstlisting}
+ \vspace*{-0.15in}
+ \begin{block}{Task}
+ \begin{itemize}
+ \item Write at least
+ two tests for above mentioned function.
+ \item Write a non recursive implementation
+ of gcd(), and test it using already
+ written tests.
+ \end{itemize}
+ \end{block}
+
+\inctime{15}
+\end{frame}
+
+\begin{frame}
+ \frametitle{We have learned}
+ \begin{itemize}
+ \item Following and Resolving Error Messages.
+ \item Exceptions.
+ \item Approach for Debugging.
+ \item Writting and running tests.
+ \end{itemize}
+\end{frame}
+
+\end{document}
--- a/day2/session5.tex Wed Oct 28 16:01:13 2009 +0530
+++ b/day2/session5.tex Wed Oct 28 16:01:29 2009 +0530
@@ -147,14 +147,14 @@
\begin{frame}[fragile]
\frametitle{Problem set 4}
- Finite difference
+ Central difference
\begin{equation*}
- \frac{sin(x+h)-sin(x)}{h}
+ \frac{sin(x+h)-sin(x-h)}{2h}
\end{equation*}
\begin{lstlisting}
- >>> x = linspace(0,2*pi,100)
- >>> y = sin(x)
- >>> deltax = x[1] - x[0]
+ In []: x = linspace(0, 2*pi, 100)
+ In []: y = sin(x)
+ In []: deltax = x[1] - x[0]
\end{lstlisting}
\pause
\begin{enumerate}