--- a/day1/session2.tex Thu Oct 29 00:39:33 2009 +0530
+++ b/day1/session2.tex Sat Oct 31 01:20:28 2009 +0530
@@ -1,4 +1,4 @@
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: FOSSEE
@@ -124,12 +124,9 @@
\end{frame}
\begin{frame}
-\frametitle{Why we didn't close the IPython??}
-\begin{itemize}
- \item IPython provides a convenient feature
- \item To go back, edit, and re-run commands
- \item But when you close, this is lost
-\end{itemize}
+\frametitle{Why we didn't close IPython?}
+ IPython provides a convenient feature to go back, edit, and re-run commands.\\
+ \alert{But when you close, all this is lost.}
\end{frame}
\begin{frame}
@@ -148,7 +145,7 @@
\begin{frame}[fragile]
\frametitle{Python Scripts}
\begin{itemize}
-\item Put all commands used in review problem into a file.
+\item Put commands used in review problem into file.
\item use hist command of IPython.
\end{itemize}
\begin{lstlisting}
@@ -161,17 +158,18 @@
\frametitle{Python Scripts\ldots}
\begin{itemize}
\item Open a new file in an \alert{editor}
- \item Copy and paste required lines from the output of \typ{\%hist -n}
+ \item Copy and paste from the output of \typ{\%hist -n}
\item Save the file as \typ{sine_plot.py}
\end{itemize}
\begin{itemize}
- \item run the file in IPython using \typ{\%run sine_plot.py}\\
+ \item run the file in IPython using \typ{\%run -i sine_plot.py}\\
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Why would I plot f(x)?}
How often do we plot analytical functions?\\We plot experimental data more.
+\begin{small}
\begin{lstlisting}
In []: x = [0, 1, 2, 3]
@@ -179,14 +177,21 @@
In []: plot(x, y)
Out[]: [<matplotlib.lines.Line2D object at 0xa73aa8c>]
+
+In []: xlabel('X')
+Out[]: <matplotlib.text.Text object at 0x986e9ac>
+
+In []: ylabel('Y')
+Out[]: <matplotlib.text.Text object at 0x98746ec>
\end{lstlisting}
+\end{small}
\end{frame}
\begin{frame}[fragile]
\begin{figure}
\includegraphics[width=3.5in]{data/straightline.png}
\end{figure}
-\alert{Is this what you have??}
+\alert{Is this what you have?}
\end{frame}
\begin{frame}[fragile]
@@ -197,11 +202,11 @@
\begin{lstlisting}
In []: clf()
- In []: plot(L, TSq, 'o')
+ In []: plot(x, y, 'o')
Out[]: [<matplotlib.lines.Line2D object at 0xac17e0c>]
In []: clf()
- In []: plot(L, TSq, '.')
+ In []: plot(x, y, '.')
Out[]: [<matplotlib.lines.Line2D object at 0xac17e0c>]
\end{lstlisting}
\end{frame}
@@ -216,8 +221,8 @@
\begin{frame}[fragile]
\frametitle{Additional Plotting Attributes}
\begin{itemize}
- \item \kwrd{'o'} - Dots
- \item \kwrd{'.'} - Smaller Dots
+ \item \kwrd{'o'} - Filled circles
+ \item \kwrd{'.'} - Small Dots
\item \kwrd{'-'} - Lines
\item \kwrd{'- -'} - Dashed lines
\end{itemize}
@@ -226,14 +231,14 @@
\section{Lists}
\begin{frame}[fragile]
\frametitle{How to create the data?}
-What were \typ{x} and \typ{y}??\\
+What were \typ{x} and \typ{y}?\\
\begin{center}
\alert{\typ{lists!!}}
\end{center}
\begin{lstlisting}
In []: mtlist = [] #Empty List
-In []: lst = [1,2,3,4,5]
+In []: lst = [ 1, 2, 3, 4, 5]
\end{lstlisting}
\end{frame}
@@ -248,9 +253,8 @@
\begin{frame}[fragile]
\frametitle{List: Slicing}
\begin{block}{Remember\ldots}
- \kwrd{In []: lst = [1,2,3,4,5]}
+ \kwrd{In []: lst = [ 1, 2, 3, 4, 5]}
\end{block}
-\alert{\typ{list[initial:final:step]}}
\begin{lstlisting}
In []: lst[1:3] # A slice.
Out[]: [2, 3]
@@ -258,12 +262,13 @@
In []: lst[1:-1]
Out[]: [2, 3]
\end{lstlisting}
+\alert{\typ{list[initial:final]}}
\end{frame}
\begin{frame}[fragile]
\frametitle{List operations}
\begin{lstlisting}
-In []: anthrlst = [6,7,8,9]
+In []: anthrlst = [ 6, 7, 8, 9]
In []: lnglst = lst + anthrlst
In []: lnglst
@@ -271,7 +276,7 @@
In []: lst.append(6)
In []: lst
-Out[]: [1, 2, 3, 4, 5, 6]
+Out[]: [ 1, 2, 3, 4, 5, 6]
\end{lstlisting}
%\inctime{10}
\end{frame}
@@ -332,7 +337,7 @@
In []: plot(L, TSq)
Out[]: [<matplotlib.lines.Line2D object at 0xa5b05ac>]
\end{lstlisting}
-This gives the list \kwrd{TSq} which is the list of squares of T values.
+This gives \kwrd{TSq} which is the list of squares of T values.
\end{frame}
\begin{frame}[fragile]
@@ -342,31 +347,11 @@
\end{frame}
\begin{frame}[fragile]
-\frametitle{More of \texttt{for}}
-\begin{itemize}
-\item Used to iterate over lists
-\item Let us look at another example.
-\end{itemize}
+\frametitle{What about larger data sets?}
+\alert{Data is usually present in a file!} \\
+Lets look at the \typ{pendulum.txt} file.
\begin{lstlisting}
-In []: lst = [1,2,3,4,5,6]
-In []: for num in lst:
- ....: print num, num*num
- ....:
-1 1
-2 4
-3 9
-4 16
-5 25
-6 36
-\end{lstlisting}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{What about larger data sets??}
-\alert{Data is usually present in a file!} \\
-Lets look at the pendulum.txt file.
-\begin{lstlisting}
-$cat data/pendulum.txt
+$ cat pendulum.txt
1.0000e-01 6.9004e-01
1.1000e-01 6.9497e-01
1.2000e-01 7.4252e-01
@@ -378,18 +363,16 @@
\end{frame}
\begin{frame}[fragile]
-\frametitle{Reading pendulum.txt}
+\frametitle{Reading \typ{pendulum.txt}}
\begin{itemize}
- \item We now wish to repeat the plot using the values from a file
- \item Given a file containing L vs. T values
- \item Column1 - L; Column2 - T
- \item Read the file
- \item Plot points for L vs. $T^2$
+ \item Let us generate a plot from the data file
+ \item File contains L vs. T values
+ \item L - Column1; T - Column2
\end{itemize}
\end{frame}
\begin{frame}[fragile]
-\frametitle{Reading pendulum.txt}
+\frametitle{Reading \typ{pendulum.txt}}
\begin{lstlisting}
In []: L = []
In []: T = []
@@ -400,12 +383,12 @@
\end{lstlisting}
\begin{itemize}
\item We now have two lists L and T
-\item Now, Repeat previous steps for plotting
+\item Now, repeat previous steps for plotting
\end{itemize}
\end{frame}
\begin{frame}[fragile]
-\frametitle{Plotting from pendulum.txt}
+\frametitle{Plotting from \typ{pendulum.txt}}
\begin{lstlisting}
In []: TSq = []
@@ -426,9 +409,9 @@
\frametitle{Reading files \ldots}
\typ{In []: for line in open('pendulum.txt'):}
\begin{itemize}
-\item opening file `pendulum.txt'
-\item iterating through the file by reading each line into variable \typ{line}
-\item \typ{line} is a \kwrd{string} variable
+\item opening file `\typ{pendulum.txt}'
+\item reading the file line by line
+\item \typ{line} is a \kwrd{string}
\end{itemize}
\end{frame}
@@ -447,9 +430,9 @@
\begin{frame}[fragile]
\frametitle{Strings and \typ{split()}}
\begin{lstlisting}
-In []: line = 'hello world'
+In []: greet = 'hello world'
-In []: line.split()
+In []: greet.split()
Out[]: ['hello', 'world']
\end{lstlisting}
This is what happens with \typ{line}
@@ -476,13 +459,42 @@
\end{lstlisting}
\end{frame}
+\begin{frame}[fragile]
+\frametitle{Let's review the code}
+\begin{small}
+\begin{lstlisting}
+In []: L = []
+In []: T = []
+In []: for line in open('pendulum.txt'):
+ .... points = line.split()
+ .... L.append(float(points[0]))
+ .... T.append(float(points[1]))
+
+In []: TSq = []
+
+In []: for t in T:
+ ....: TSq.append(t*t)
+
+In []: plot(L, TSq, '.')
+\end{lstlisting}
+\end{small}
+\end{frame}
+
+\begin{frame}[fragile]
+\begin{figure}
+\includegraphics[width=3.5in]{data/L-Tsq.png}
+\end{figure}
+\end{frame}
+
\section {Summary}
-\begin{frame}
-\frametitle{Summary}
-So what did we learn in this session??
+\begin{frame}[fragile]
+\frametitle{What did we learn?}
\begin{itemize}
- \item Creating and running Python scripts
- \item Plotting points and Plotting attributes
+ \item \kwrd{\%hist -n}
+ \item Python scripts
+ \item \kwrd{\%run -i}
+ \item Plotting points
+ \item Plot attributes
\item Lists
\item \kwrd{for}
\item Reading files
--- a/day1/session4.tex Thu Oct 29 00:39:33 2009 +0530
+++ b/day1/session4.tex Sat Oct 31 01:20:28 2009 +0530
@@ -128,24 +128,24 @@
\begin{frame}
\frametitle{Matrices: Introduction}
-We looked at the Van der Monde matrix in the previous session,\\
-let us now look at matrices in a little more detail.
+Let us now look at matrices in detail.\\
+\alert{All matrix operations are done using \kwrd{arrays}}
\end{frame}
\subsection{Initializing}
\begin{frame}[fragile]
\frametitle{Matrices: Initializing}
\begin{lstlisting}
-In []: A = matrix([[ 1, 1, 2, -1],
- [ 2, 5, -1, -9],
- [ 2, 1, -1, 3],
- [ 1, -3, 2, 7]])
+In []: A = array([[ 1, 1, 2, -1],
+ [ 2, 5, -1, -9],
+ [ 2, 1, -1, 3],
+ [ 1, -3, 2, 7]])
In []: A
Out[]:
-matrix([[ 1, 1, 2, -1],
- [ 2, 5, -1, -9],
- [ 2, 1, -1, 3],
- [ 1, -3, 2, 7]])
+array([[ 1, 1, 2, -1],
+ [ 2, 5, -1, -9],
+ [ 2, 1, -1, 3],
+ [ 1, -3, 2, 7]])
\end{lstlisting}
\end{frame}
@@ -154,19 +154,19 @@
\begin{frame}[fragile]
\frametitle{Transpose of a Matrix}
\begin{lstlisting}
-In []: linalg.transpose(A)
+In []: A.T
Out[]:
-matrix([[ 1, 2, 2, 1],
- [ 1, 5, 1, -3],
- [ 2, -1, -1, 2],
- [-1, -9, 3, 7]])
+array([[ 1, 2, 2, 1],
+ [ 1, 5, 1, -3],
+ [ 2, -1, -1, 2],
+ [-1, -9, 3, 7]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Sum of all elements}
\begin{lstlisting}
-In []: linalg.sum(A)
+In []: sum(A)
Out[]: 12
\end{lstlisting}
\end{frame}
@@ -174,41 +174,56 @@
\begin{frame}[fragile]
\frametitle{Matrix Addition}
\begin{lstlisting}
-In []: B = matrix([[3,2,-1,5],
- [2,-2,4,9],
- [-1,0.5,-1,-7],
- [9,-5,7,3]])
-In []: linalg.add(A,B)
+In []: B = array([[3,2,-1,5],
+ [2,-2,4,9],
+ [-1,0.5,-1,-7],
+ [9,-5,7,3]])
+In []: A + B
Out[]:
-matrix([[ 4. , 3. , 1. , 4. ],
- [ 4. , 3. , 3. , 0. ],
- [ 1. , 1.5, -2. , -4. ],
- [ 10. , -8. , 9. , 10. ]])
+array([[ 4. , 3. , 1. , 4. ],
+ [ 4. , 3. , 3. , 0. ],
+ [ 1. , 1.5, -2. , -4. ],
+ [ 10. , -8. , 9. , 10. ]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
+\frametitle{Elementwise Multiplication}
+\begin{lstlisting}
+In []: A*B
+Out[]:
+array([[ 3. , 2. , -2. , -5. ],
+ [ 4. , -10. , -4. , -81. ],
+ [ -2. , 0.5, 1. , -21. ],
+ [ 9. , 15. , 14. , 21. ]])
+
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
\frametitle{Matrix Multiplication}
\begin{lstlisting}
-In []: linalg.multiply(A, B)
+In []: dot(A,B)
Out[]:
-matrix([[ 3. , 2. , -2. , -5. ],
- [ 4. , -10. , -4. , -81. ],
- [ -2. , 0.5, 1. , -21. ],
- [ 9. , 15. , 14. , 21. ]])
+array([[ -6. , 6. , -6. , -3. ],
+ [-64. , 38.5, -44. , 35. ],
+ [ 36. , -13.5, 24. , 35. ],
+ [ 58. , -26. , 34. , -15. ]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Inverse of a Matrix}
+\begin{lstlisting}
+In []: inv(A)
+\end{lstlisting}
\begin{small}
\begin{lstlisting}
-In []: linalg.inv(A)
Out[]:
-matrix([[-0.5 , 0.55, -0.15, 0.7 ],
- [ 0.75, -0.5 , 0.5 , -0.75],
- [ 0.5 , -0.15, -0.05, -0.1 ],
- [ 0.25, -0.25, 0.25, -0.25]])
+array([[-0.5 , 0.55, -0.15, 0.7 ],
+ [ 0.75, -0.5 , 0.5 , -0.75],
+ [ 0.5 , -0.15, -0.05, -0.1 ],
+ [ 0.25, -0.25, 0.25, -0.25]])
\end{lstlisting}
\end{small}
\end{frame}
@@ -217,24 +232,24 @@
\frametitle{Determinant}
\begin{lstlisting}
In []: det(A)
-Out[66]: 80.0
+Out[]: 80.0
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
-\frametitle{Eigen Values and Eigen Matrix}
+\frametitle{Eigenvalues and Eigen Vectors}
\begin{small}
\begin{lstlisting}
-In []: E = matrix([[3,2,4],[2,0,2],[4,2,3]])
+In []: E = array([[3,2,4],[2,0,2],[4,2,3]])
-In []: linalg.eig(E)
+In []: eig(E)
Out[]:
(array([-1., 8., -1.]),
- matrix([[-0.74535599, 0.66666667, -0.1931126 ],
+ array([[-0.74535599, 0.66666667, -0.1931126 ],
[ 0.2981424 , 0.33333333, -0.78664085],
[ 0.59628479, 0.66666667, 0.58643303]]))
-In []: linalg.eigvals(E)
+In []: eigvals(E)
Out[]: array([-1., 8., -1.])
\end{lstlisting}
\end{small}
@@ -243,23 +258,23 @@
\begin{frame}[fragile]
\frametitle{Computing Norms}
\begin{lstlisting}
-In []: linalg.norm(E)
+In []: norm(E)
Out[]: 8.1240384046359608
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
- \frametitle{Single Value Decomposition}
+ \frametitle{Singular Value Decomposition}
\begin{small}
\begin{lstlisting}
-In [76]: linalg.svd(E)
-Out[76]:
-(matrix(
+In []: svd(E)
+Out[]:
+(array(
[[ -6.66666667e-01, -1.23702565e-16, 7.45355992e-01],
[ -3.33333333e-01, -8.94427191e-01, -2.98142397e-01],
[ -6.66666667e-01, 4.47213595e-01, -5.96284794e-01]]),
array([ 8., 1., 1.]),
- matrix([[-0.66666667, -0.33333333, -0.66666667],
+ array([[-0.66666667, -0.33333333, -0.66666667],
[-0. , 0.89442719, -0.4472136 ],
[-0.74535599, 0.2981424 , 0.59628479]]))
\end{lstlisting}
@@ -289,12 +304,12 @@
\frametitle{Solving using Matrices}
Let us now look at how to solve this using \kwrd{matrices}
\begin{lstlisting}
- In []: A = matrix([[3,2,-1],
- [2,-2,4],
- [-1, 0.5, -1]])
- In []: b = matrix([[1], [-2], [0]])
- In []: x = linalg.solve(A, b)
- In []: Ax = dot(A, x)
+ In []: A = array([[3,2,-1],
+ [2,-2,4],
+ [-1, 0.5, -1]])
+ In []: b = array([[1], [-2], [0]])
+ In []: x = solve(A, b)
+ In []: Ax = dot(A,x)
\end{lstlisting}
\end{frame}
@@ -314,9 +329,9 @@
\begin{lstlisting}
In []: Ax
Out[]:
-matrix([[ 1.00000000e+00],
- [ -2.00000000e+00],
- [ 2.22044605e-16]])
+array([[ 1.00000000e+00],
+ [ -2.00000000e+00],
+ [ 2.22044605e-16]])
\end{lstlisting}
\begin{block}{}
The last term in the matrix is actually \alert{0}!\\
@@ -332,7 +347,74 @@
\subsection{Exercises}
\begin{frame}[fragile]
-\frametitle{Problem Set 4: Problem 4.1}
+\frametitle{Problem 1}
+Given the matrix:\\
+\begin{center}
+\begin{bmatrix}
+-2 & 2 & 3\\
+ 2 & 1 & 6\\
+-1 &-2 & 0\\
+\end{bmatrix}
+\end{center}
+Find:
+\begin{itemize}
+ \item[i] Transpose
+ \item[ii]Inverse
+ \item[iii]Determinant
+ \item[iv] Eigenvalues and Eigen vectors
+ \item[v] Singular Value decomposition
+\end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Problem 2}
+Given
+\begin{center}
+A =
+\begin{bmatrix}
+-3 & 1 & 5 \\
+1 & 0 & -2 \\
+5 & -2 & 4 \\
+\end{bmatrix}
+, B =
+\begin{bmatrix}
+0 & 9 & -12 \\
+-9 & 0 & 20 \\
+12 & -20 & 0 \\
+\end{bmatrix}
+\end{center}
+Find:
+\begin{itemize}
+ \item[i] Sum of A and B
+ \item[ii]Elementwise Product of A and B
+ \item[iii] Matrix product of A and B
+\end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Solution}
+Sum:
+\begin{bmatrix}
+-3 & 10 & 7 \\
+-8 & 0 & 18 \\
+17 & -22 & 4 \\
+\end{bmatrix}
+,\\ Elementwise Product:
+\begin{bmatrix}
+0 & 9 & -60 \\
+-9 & 0 & -40 \\
+60 & 40 & 0 \\
+\end{bmatrix}
+,\\ Matrix product:
+\begin{bmatrix}
+51 & -127 & 56 \\
+-24 & 49 & -12 \\
+66 & -35 & -100 \\
+\end{bmatrix}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{Problem 3}
Solve the set of equations:
\begin{align*}
x + y + 2z -w & = 3\\
@@ -345,26 +427,18 @@
\begin{frame}[fragile]
\frametitle{Solution}
-Solution:
-\begin{lstlisting}
+Use \kwrd{solve()}
\begin{align*}
x & = -5\\
y & = 2\\
z & = 3\\
w & = 0\\
\end{align*}
-\end{lstlisting}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Problem 4.2}
-
\end{frame}
\section{Summary}
\begin{frame}
- \frametitle{Summary}
-So what did we learn??
+ \frametitle{What did we learn??}
\begin{itemize}
\item Matrices
\begin{itemize}
@@ -373,9 +447,9 @@
\item Multiplication
\item Inverse of a matrix
\item Determinant
- \item Eigen values and Eigen matrix
+ \item Eigenvalues and Eigen vector
\item Norms
- \item Single Value Decomposition
+ \item Singular Value Decomposition
\end{itemize}
\item Solving linear equations
\end{itemize}