Session 4, Debugging and Testing.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: FOSSEE
% Copyright (c) 2009, FOSSEE, IIT Bombay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
\usetheme{Warsaw}
\useoutertheme{split}
\setbeamercovered{transparent}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily\bfseries,
commentstyle=\color{red}\itshape,
stringstyle=\color{darkgreen},
showstringspaces=false,
keywordstyle=\color{blue}\bfseries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar}
{#1}
\end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
\newcommand{\typ}[1]{\lstinline{#1}}
\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
% language=Python,
% basicstyle=\small\ttfamily,
% commentstyle=\ttfamily\color{blue},
% stringstyle=\ttfamily\color{orange},
% showstringspaces=false,
% breaklines=true,
% postbreak = \space\dots
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[Basic Python]{Matrices, Solution of equations}
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {31, October 2009\\Day 1, Session 4}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}
%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Outline}
\tableofcontents
% \pausesections
\end{frame}
\section{Matrices}
\begin{frame}
\frametitle{Matrices: Introduction}
We looked at the Van der Monde matrix in the previous session,\\
let us now look at matrices in a little more detail.
\end{frame}
\subsection{Initializing}
\begin{frame}[fragile]
\frametitle{Matrices: Initializing}
\begin{lstlisting}
In []: A = ([[5, 2, 4],
[-3, 6, 2],
[3, -3, 1]])
In []: A
Out[]: [[5, 2, 4],
[-3, 6, 2],
[3, -3, 1]]
\end{lstlisting}
\end{frame}
\subsection{Basic Operations}
\begin{frame}[fragile]
\frametitle{Transpose of a Matrix}
\begin{lstlisting}
In []: linalg.transpose(A)
Out[]:
matrix([[ 5, -3, 3],
[ 2, 6, -3],
[ 4, 2, 1]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Sum of all elements}
\begin{lstlisting}
In []: linalg.sum(A)
Out[]: 17
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrix Addition}
\begin{lstlisting}
In []: B = matrix([[3,2,-1],
[2,-2,4],
[-1, 0.5, -1]])
In []: linalg.add(A, B)
Out[]:
matrix([[ 8. , 4. , 3. ],
[-1. , 4. , 6. ],
[ 2. , -2.5, 0. ]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrix Multiplication}
\begin{lstlisting}
In []: linalg.multiply(A, B)
Out[]:
matrix([[ 15. , 4. , -4. ],
[ -6. , -12. , 8. ],
[ -3. , -1.5, -1. ]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Inverse of a Matrix}
\begin{small}
\begin{lstlisting}
In []: linalg.inv(A)
Out[]:
array([[ 0.28571429, -0.33333333, -0.47619048],
[ 0.21428571, -0.16666667, -0.52380952],
[-0.21428571, 0.5 , 0.85714286]])
\end{lstlisting}
\end{small}
\end{frame}
\begin{frame}[fragile]
\frametitle{Determinant}
\begin{lstlisting}
In []: det(A)
Out[]: 42.0
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Eigen Values and Eigen Matrix}
\begin{small}
\begin{lstlisting}
In []: linalg.eig(A)
Out[]:
(array([ 7., 2., 3.]),
matrix([[-0.57735027, 0.42640143, 0.37139068],
[ 0.57735027, 0.63960215, 0.74278135],
[-0.57735027, -0.63960215, -0.55708601]]))
\end{lstlisting}
\end{small}
\end{frame}
\begin{frame}[fragile]
\frametitle{Computing Norms}
\begin{lstlisting}
In []: linalg.norm(A)
Out[]: 10.63014581273465
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Single Value Decomposition}
\begin{small}
\begin{lstlisting}
In []: linalg.svd(A)
Out[]:
(matrix([[-0.13391246, -0.94558684, -0.29653495],
[ 0.84641267, -0.26476432, 0.46204486],
[-0.51541542, -0.18911737, 0.83581192]]),
array([ 7.96445022, 7. , 0.75334767]),
matrix([[-0.59703387, 0.79815896, 0.08057807],
[-0.64299905, -0.41605821, -0.64299905],
[-0.47969029, -0.43570384, 0.7616163 ]]))
\end{lstlisting}
\end{small}
\end{frame}
\section{Solving linear equations}
\begin{frame}[fragile]
\frametitle{Solution of equations}
Consider,
\begin{align*}
3x + 2y - z & = 1 \\
2x - 2y + 4z & = -2 \\
-x + \frac{1}{2}y -z & = 0
\end{align*}
Solution:
\begin{align*}
x & = 1 \\
y & = -2 \\
z & = -2
\end{align*}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solving using Matrices}
Let us now look at how to solve this using \kwrd{matrices}
\begin{lstlisting}
In []: A = matrix([[3,2,-1],
[2,-2,4],
[-1, 0.5, -1]])
In []: b = matrix([[1], [-2], [0]])
In []: x = linalg.solve(A, b)
In []: Ax = dot(A, x)
In []: allclose(Ax, b)
Out[]: True
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solution:}
\begin{lstlisting}
In []: x
Out[]:
array([[ 1.],
[-2.],
[-2.]])
In []: Ax
Out[]:
matrix([[ 1.00000000e+00],
[ -2.00000000e+00],
[ 2.22044605e-16]])
\end{lstlisting}
\end{frame}
\section{Summary}
\begin{frame}
\frametitle{Summary}
So what did we learn??
\begin{itemize}
\item Matrices
\begin{itemize}
\item Transpose
\item Addition
\item Multiplication
\item Inverse of a matrix
\item Determinant
\item Eigen values and Eigen matrix
\item Norms
\item Single Value Decomposition
\end{itemize}
\item Solving linear equations
\end{itemize}
\end{frame}
\end{document}