Added initial slides of Slicing and Striding to session 4.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: FOSSEE
% Copyright (c) 2009, FOSSEE, IIT Bombay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
\usetheme{Warsaw}
\useoutertheme{infolines}
\setbeamercovered{transparent}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily\bfseries,
commentstyle=\color{red}\itshape,
stringstyle=\color{darkgreen},
showstringspaces=false,
keywordstyle=\color{blue}\bfseries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar}
{#1}
\end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
\newcommand{\typ}[1]{\lstinline{#1}}
\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
% language=Python,
% basicstyle=\small\ttfamily,
% commentstyle=\ttfamily\color{blue},
% stringstyle=\ttfamily\color{orange},
% showstringspaces=false,
% breaklines=true,
% postbreak = \space\dots
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[Matrices \& Equations]{Python for Science and Engg: Matrices, Least Square Fit, \& Solution of equations}
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {31, October 2009\\Day 1, Session 4}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}
%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Outline}
\tableofcontents
% \pausesections
\end{frame}
\section{Matrices}
\begin{frame}
\frametitle{Matrices: Introduction}
\alert{All matrix operations are done using \kwrd{arrays}}
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrices: Initializing}
\begin{lstlisting}
In []: A = array([[ 1, 1, 2, -1],
[ 2, 5, -1, -9],
[ 2, 1, -1, 3],
[ 1, -3, 2, 7]])
In []: A
Out[]:
array([[ 1, 1, 2, -1],
[ 2, 5, -1, -9],
[ 2, 1, -1, 3],
[ 1, -3, 2, 7]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Accessing elements}
\begin{lstlisting}
In []: C = array([[1,1,2],
[2,4,1],
[-1,3,7]])
In []: C[1][2]
Out[]: 1
In []: C[1,2]
Out[]: 1
In []: C[1]
Out[]: array([2, 4, 1])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Changing elements}
\begin{small}
\begin{lstlisting}
In []: C[1,1] = -2
In []: C
Out[]:
array([[ 1, 1, 2],
[ 2, -2, 1],
[-1, 3, 7]])
In []: C[1] = [0,0,0]
In []: C
Out[]:
array([[ 1, 1, 2],
[ 0, 0, 0],
[-1, 3, 7]])
\end{lstlisting}
\end{small}
How to change one \alert{column}?
\end{frame}
\begin{frame}[fragile]
\frametitle{Slicing}
\begin{small}
\begin{lstlisting}
In []: C[:,1]
Out[]: array([1, 0, 3])
In []: C[1,:]
Out[]: array([0, 0, 0])
In []: C[0:2,:]
Out[]:
array([[1, 1, 2],
[0, 0, 0]])
In []: C[1:3,:]
Out[]:
array([[ 0, 0, 0],
[-1, 3, 7]])
\end{lstlisting}
\end{small}
\end{frame}
\begin{frame}[fragile]
\frametitle{Slicing \ldots}
\begin{small}
\begin{lstlisting}
In []: C[:2,:]
Out[]:
array([[1, 1, 2],
[0, 0, 0]])
In []: C[1:,:]
Out[]:
array([[ 0, 0, 0],
[-1, 3, 7]])
In []: C[1:,:2]
Out[]:
array([[ 0, 0],
[-1, 3]])
\end{lstlisting}
\end{small}
\end{frame}
\begin{frame}[fragile]
\frametitle{Striding}
\begin{lstlisting}
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Slicing \& Striding Exercises}
\begin{lstlisting}
\end{lstlisting}
\end{frame}
\subsection{Basic Operations}
\begin{frame}[fragile]
\frametitle{Transpose of a Matrix}
\begin{lstlisting}
In []: A.T
Out[]:
array([[ 1, 2, 2, 1],
[ 1, 5, 1, -3],
[ 2, -1, -1, 2],
[-1, -9, 3, 7]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Sum of all elements}
\begin{lstlisting}
In []: sum(A)
Out[]: 12
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrix Addition}
\begin{lstlisting}
In []: B = array([[3,2,-1,5],
[2,-2,4,9],
[-1,0.5,-1,-7],
[9,-5,7,3]])
In []: A + B
Out[]:
array([[ 4. , 3. , 1. , 4. ],
[ 4. , 3. , 3. , 0. ],
[ 1. , 1.5, -2. , -4. ],
[ 10. , -8. , 9. , 10. ]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Elementwise Multiplication}
\begin{lstlisting}
In []: A*B
Out[]:
array([[ 3. , 2. , -2. , -5. ],
[ 4. , -10. , -4. , -81. ],
[ -2. , 0.5, 1. , -21. ],
[ 9. , 15. , 14. , 21. ]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrix Multiplication}
\begin{lstlisting}
In []: dot(A,B)
Out[]:
array([[ -6. , 6. , -6. , -3. ],
[-64. , 38.5, -44. , 35. ],
[ 36. , -13.5, 24. , 35. ],
[ 58. , -26. , 34. , -15. ]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Inverse of a Matrix}
\begin{lstlisting}
In []: inv(A)
\end{lstlisting}
\begin{small}
\begin{lstlisting}
Out[]:
array([[-0.5 , 0.55, -0.15, 0.7 ],
[ 0.75, -0.5 , 0.5 , -0.75],
[ 0.5 , -0.15, -0.05, -0.1 ],
[ 0.25, -0.25, 0.25, -0.25]])
\end{lstlisting}
\end{small}
\end{frame}
\begin{frame}[fragile]
\frametitle{Determinant}
\begin{lstlisting}
In []: det(A)
Out[]: 80.0
\end{lstlisting}
\end{frame}
%%use S=array(X,Y)
\begin{frame}[fragile]
\frametitle{Eigenvalues and Eigen Vectors}
\begin{small}
\begin{lstlisting}
In []: E = array([[3,2,4],[2,0,2],[4,2,3]])
In []: eig(E)
Out[]:
(array([-1., 8., -1.]),
array([[-0.74535599, 0.66666667, -0.1931126 ],
[ 0.2981424 , 0.33333333, -0.78664085],
[ 0.59628479, 0.66666667, 0.58643303]]))
In []: eigvals(E)
Out[]: array([-1., 8., -1.])
\end{lstlisting}
\end{small}
\end{frame}
%% \begin{frame}[fragile]
%% \frametitle{Computing Norms}
%% \begin{lstlisting}
%% In []: norm(E)
%% Out[]: 8.1240384046359608
%% \end{lstlisting}
%% \end{frame}
%% \begin{frame}[fragile]
%% \frametitle{Singular Value Decomposition}
%% \begin{small}
%% \begin{lstlisting}
%% In []: svd(E)
%% Out[]:
%% (array(
%% [[ -6.66666667e-01, -1.23702565e-16, 7.45355992e-01],
%% [ -3.33333333e-01, -8.94427191e-01, -2.98142397e-01],
%% [ -6.66666667e-01, 4.47213595e-01, -5.96284794e-01]]),
%% array([ 8., 1., 1.]),
%% array([[-0.66666667, -0.33333333, -0.66666667],
%% [-0. , 0.89442719, -0.4472136 ],
%% [-0.74535599, 0.2981424 , 0.59628479]]))
%% \end{lstlisting}
%% \end{small}
%% \inctime{15}
%% \end{frame}
\section{Least Squares Fit}
\begin{frame}[fragile]
\frametitle{$L$ vs. $T^2$}
\vspace{-0.15in}
\begin{figure}
\includegraphics[width=4in]{data/L-Tsq-points.png}
\end{figure}
\end{frame}
\begin{frame}[fragile]
\frametitle{$L$ vs. $T^2$}
\vspace{-0.15in}
\begin{figure}
\includegraphics[width=4in]{data/L-Tsq-Line.png}
\end{figure}
\end{frame}
\begin{frame}[fragile]
\frametitle{Least Squares Fit}
\vspace{-0.15in}
\begin{figure}
\includegraphics[width=4in]{data/least-sq-fit.png}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Least Square Fit Curve}
\begin{itemize}
\item $T^2$ and $L$ have a linear relationship
\item Hence, Least Square Fit Curve is a line
\item we shall use the \typ{lstsq} function
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{\typ{lstsq}}
\begin{itemize}
\item We need to fit a line through points for the equation $T^2 = m \cdot L+c$
\item The equation can be re-written as $T^2 = A \cdot p$
\item where A is
$\begin{bmatrix}
L_1 & 1 \\
L_2 & 1 \\
\vdots & \vdots\\
L_N & 1 \\
\end{bmatrix}$
and p is
$\begin{bmatrix}
m\\
c\\
\end{bmatrix}$
\item We need to find $p$ to plot the line
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Generating $A$}
\begin{lstlisting}
In []: A = array([L, ones_like(L)])
In []: A = A.T
\end{lstlisting}
%% \begin{itemize}
%% \item A is also called a Van der Monde matrix
%% \item It can also be generated using \typ{vander}
%% \end{itemize}
%% \begin{lstlisting}
%% In []: A = vander(L, 2)
%% \end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{\typ{lstsq} \ldots}
\begin{itemize}
\item Now use the \typ{lstsq} function
\item Along with a lot of things, it returns the least squares solution
\end{itemize}
\begin{lstlisting}
In []: result = lstsq(A,TSq)
In []: coef = result[0]
\end{lstlisting}
\end{frame}
\subsection{Plotting}
\begin{frame}[fragile]
\frametitle{Least Square Fit Line \ldots}
We get the points of the line from \typ{coef}
\begin{lstlisting}
In []: Tline = coef[0]*L + coef[1]
\end{lstlisting}
\begin{itemize}
\item Now plot Tline vs. L, to get the Least squares fit line.
\end{itemize}
\begin{lstlisting}
In []: plot(L, Tline)
\end{lstlisting}
\end{frame}
\section{Solving linear equations}
\begin{frame}[fragile]
\frametitle{Solution of equations}
Consider,
\begin{align*}
3x + 2y - z & = 1 \\
2x - 2y + 4z & = -2 \\
-x + \frac{1}{2}y -z & = 0
\end{align*}
Solution:
\begin{align*}
x & = 1 \\
y & = -2 \\
z & = -2
\end{align*}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solving using Matrices}
Let us now look at how to solve this using \kwrd{matrices}
\begin{lstlisting}
In []: A = array([[3,2,-1],
[2,-2,4],
[-1, 0.5, -1]])
In []: b = array([[1], [-2], [0]])
In []: x = solve(A, b)
In []: Ax = dot(A,x)
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solution:}
\begin{lstlisting}
In []: x
Out[]:
array([[ 1.],
[-2.],
[-2.]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Let's check!}
\begin{lstlisting}
In []: Ax
Out[]:
array([[ 1.00000000e+00],
[ -2.00000000e+00],
[ 2.22044605e-16]])
\end{lstlisting}
\begin{block}{}
The last term in the matrix is actually \alert{0}!\\
We can use \kwrd{allclose()} to check.
\end{block}
\begin{lstlisting}
In []: allclose(Ax, b)
Out[]: True
\end{lstlisting}
\inctime{15}
\end{frame}
\subsection{Exercises}
\begin{frame}[fragile]
\frametitle{Problem 1}
Given the matrix:\\
\begin{center}
$\begin{bmatrix}
-2 & 2 & 3\\
2 & 1 & 6\\
-1 &-2 & 0\\
\end{bmatrix}$
\end{center}
Find:
\begin{itemize}
\item[i] Transpose
\item[ii]Inverse
\item[iii]Determinant
\item[iv] Eigenvalues and Eigen vectors
\item[v] Singular Value decomposition
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Problem 2}
Given
\begin{center}
A =
$\begin{bmatrix}
-3 & 1 & 5 \\
1 & 0 & -2 \\
5 & -2 & 4 \\
\end{bmatrix}$
, B =
$\begin{bmatrix}
0 & 9 & -12 \\
-9 & 0 & 20 \\
12 & -20 & 0 \\
\end{bmatrix}$
\end{center}
Find:
\begin{itemize}
\item[i] Sum of A and B
\item[ii]Elementwise Product of A and B
\item[iii] Matrix product of A and B
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solution}
Sum:
$\begin{bmatrix}
-3 & 10 & 7 \\
-8 & 0 & 18 \\
17 & -22 & 4 \\
\end{bmatrix}$
,\\ Elementwise Product:
$\begin{bmatrix}
0 & 9 & -60 \\
-9 & 0 & -40 \\
60 & 40 & 0 \\
\end{bmatrix}$
,\\ Matrix product:
$\begin{bmatrix}
51 & -127 & 56 \\
-24 & 49 & -12 \\
66 & -35 & -100 \\
\end{bmatrix}$
\end{frame}
\begin{frame}[fragile]
\frametitle{Problem 3}
Solve the set of equations:
\begin{align*}
x + y + 2z -w & = 3\\
2x + 5y - z - 9w & = -3\\
2x + y -z + 3w & = -11 \\
x - 3y + 2z + 7w & = -5\\
\end{align*}
\inctime{10}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solution}
Use \kwrd{solve()}
\begin{align*}
x & = -5\\
y & = 2\\
z & = 3\\
w & = 0\\
\end{align*}
\end{frame}
\section{Summary}
\begin{frame}
\frametitle{What did we learn??}
\begin{itemize}
\item Matrices
\begin{itemize}
\item Accessing elements
\item Transpose
\item Addition
\item Multiplication
\item Inverse of a matrix
\item Determinant
\item Eigenvalues and Eigen vector
\item Norms
\item Singular Value Decomposition
\end{itemize}
\item Least Square Curve fitting
\item Solving linear equations
\end{itemize}
\end{frame}
\end{document}