Improved Day1 Session6.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: FOSSEE
% Copyright (c) 2009, FOSSEE, IIT Bombay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
\usetheme{Warsaw}
\useoutertheme{infolines}
\setbeamercovered{transparent}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily\bfseries,
commentstyle=\color{red}\itshape,
stringstyle=\color{darkgreen},
showstringspaces=false,
keywordstyle=\color{blue}\bfseries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar}
{#1}
\end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
\newcommand{\typ}[1]{\lstinline{#1}}
\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
% language=Python,
% basicstyle=\small\ttfamily,
% commentstyle=\ttfamily\color{blue},
% stringstyle=\ttfamily\color{orange},
% showstringspaces=false,
% breaklines=true,
% postbreak = \space\dots
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[Matrices \& Equations]{Python for Science and Engg: Matrices \& Solution of equations}
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {31, October 2009\\Day 1, Session 4}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}
%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Outline}
\tableofcontents
% \pausesections
\end{frame}
\section{Matrices}
\begin{frame}
\frametitle{Matrices: Introduction}
We looked at the Van der Monde matrix in the previous session,\\
let us now look at matrices in a little more detail.
\end{frame}
\subsection{Initializing}
\begin{frame}[fragile]
\frametitle{Matrices: Initializing}
\begin{lstlisting}
In []: A = matrix([[ 1, 1, 2, -1],
[ 2, 5, -1, -9],
[ 2, 1, -1, 3],
[ 1, -3, 2, 7]])
In []: A
Out[]:
matrix([[ 1, 1, 2, -1],
[ 2, 5, -1, -9],
[ 2, 1, -1, 3],
[ 1, -3, 2, 7]])
\end{lstlisting}
\end{frame}
\subsection{Basic Operations}
\begin{frame}[fragile]
\frametitle{Transpose of a Matrix}
\begin{lstlisting}
In []: linalg.transpose(A)
Out[]:
matrix([[ 1, 2, 2, 1],
[ 1, 5, 1, -3],
[ 2, -1, -1, 2],
[-1, -9, 3, 7]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Sum of all elements}
\begin{lstlisting}
In []: linalg.sum(A)
Out[]: 12
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrix Addition}
\begin{lstlisting}
In []: B = matrix([[3,2,-1,5],
[2,-2,4,9],
[-1,0.5,-1,-7],
[9,-5,7,3]])
In []: linalg.add(A,B)
Out[]:
matrix([[ 4. , 3. , 1. , 4. ],
[ 4. , 3. , 3. , 0. ],
[ 1. , 1.5, -2. , -4. ],
[ 10. , -8. , 9. , 10. ]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrix Multiplication}
\begin{lstlisting}
In []: linalg.multiply(A, B)
Out[]:
matrix([[ 3. , 2. , -2. , -5. ],
[ 4. , -10. , -4. , -81. ],
[ -2. , 0.5, 1. , -21. ],
[ 9. , 15. , 14. , 21. ]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Inverse of a Matrix}
\begin{small}
\begin{lstlisting}
In []: linalg.inv(A)
Out[]:
matrix([[-0.5 , 0.55, -0.15, 0.7 ],
[ 0.75, -0.5 , 0.5 , -0.75],
[ 0.5 , -0.15, -0.05, -0.1 ],
[ 0.25, -0.25, 0.25, -0.25]])
\end{lstlisting}
\end{small}
\end{frame}
\begin{frame}[fragile]
\frametitle{Determinant}
\begin{lstlisting}
In []: det(A)
Out[66]: 80.0
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Eigen Values and Eigen Matrix}
\begin{small}
\begin{lstlisting}
In []: E = matrix([[3,2,4],[2,0,2],[4,2,3]])
In []: linalg.eig(E)
Out[]:
(array([-1., 8., -1.]),
matrix([[-0.74535599, 0.66666667, -0.1931126 ],
[ 0.2981424 , 0.33333333, -0.78664085],
[ 0.59628479, 0.66666667, 0.58643303]]))
In []: linalg.eigvals(E)
Out[]: array([-1., 8., -1.])
\end{lstlisting}
\end{small}
\end{frame}
\begin{frame}[fragile]
\frametitle{Computing Norms}
\begin{lstlisting}
In []: linalg.norm(E)
Out[]: 8.1240384046359608
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Single Value Decomposition}
\begin{small}
\begin{lstlisting}
In [76]: linalg.svd(E)
Out[76]:
(matrix(
[[ -6.66666667e-01, -1.23702565e-16, 7.45355992e-01],
[ -3.33333333e-01, -8.94427191e-01, -2.98142397e-01],
[ -6.66666667e-01, 4.47213595e-01, -5.96284794e-01]]),
array([ 8., 1., 1.]),
matrix([[-0.66666667, -0.33333333, -0.66666667],
[-0. , 0.89442719, -0.4472136 ],
[-0.74535599, 0.2981424 , 0.59628479]]))
\end{lstlisting}
\end{small}
\inctime{15}
\end{frame}
\section{Solving linear equations}
\begin{frame}[fragile]
\frametitle{Solution of equations}
Consider,
\begin{align*}
3x + 2y - z & = 1 \\
2x - 2y + 4z & = -2 \\
-x + \frac{1}{2}y -z & = 0
\end{align*}
Solution:
\begin{align*}
x & = 1 \\
y & = -2 \\
z & = -2
\end{align*}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solving using Matrices}
Let us now look at how to solve this using \kwrd{matrices}
\begin{lstlisting}
In []: A = matrix([[3,2,-1],
[2,-2,4],
[-1, 0.5, -1]])
In []: b = matrix([[1], [-2], [0]])
In []: x = linalg.solve(A, b)
In []: Ax = dot(A, x)
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solution:}
\begin{lstlisting}
In []: x
Out[]:
array([[ 1.],
[-2.],
[-2.]])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Let's check!}
\begin{lstlisting}
In []: Ax
Out[]:
matrix([[ 1.00000000e+00],
[ -2.00000000e+00],
[ 2.22044605e-16]])
\end{lstlisting}
\begin{block}{}
The last term in the matrix is actually \alert{0}!\\
We can use \kwrd{allclose()} to check.
\end{block}
\begin{lstlisting}
In []: allclose(Ax, b)
Out[]: True
\end{lstlisting}
\inctime{15}
\end{frame}
\subsection{Exercises}
\begin{frame}[fragile]
\frametitle{Problem Set 4: Problem 4.1}
Solve the set of equations:
\begin{align*}
x + y + 2z -w & = 3\\
2x + 5y - z - 9w & = -3\\
2x + y -z + 3w & = -11 \\
x - 3y + 2z + 7w & = -5\\
\end{align*}
\inctime{10}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solution}
Solution:
\begin{lstlisting}
\begin{align*}
x & = -5\\
y & = 2\\
z & = 3\\
w & = 0\\
\end{align*}
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Problem 4.2}
\end{frame}
\section{Summary}
\begin{frame}
\frametitle{Summary}
So what did we learn??
\begin{itemize}
\item Matrices
\begin{itemize}
\item Transpose
\item Addition
\item Multiplication
\item Inverse of a matrix
\item Determinant
\item Eigen values and Eigen matrix
\item Norms
\item Single Value Decomposition
\end{itemize}
\item Solving linear equations
\end{itemize}
\end{frame}
\end{document}