Added 2 pie charts.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: FOSSEE
% Copyright (c) 2009, FOSSEE, IIT Bombay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
\usetheme{Warsaw}
\useoutertheme{split}
\setbeamercovered{transparent}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily\bfseries,
commentstyle=\color{red}\itshape,
stringstyle=\color{darkgreen},
showstringspaces=false,
keywordstyle=\color{blue}\bfseries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar}
{#1}
\end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
\newcommand{\typ}[1]{\lstinline{#1}}
\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
% language=Python,
% basicstyle=\small\ttfamily,
% commentstyle=\ttfamily\color{blue},
% stringstyle=\ttfamily\color{orange},
% showstringspaces=false,
% breaklines=true,
% postbreak = \space\dots
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[Basic Python]{Matrices, Solution of equations and Integration\\}
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {31, October 2009\\Day 1, Session 4}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}
%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
%%\AtBeginSection[]
%%{
%%\begin{frame}<beamer>
%% \frametitle{Outline}
%% \tableofcontents[currentsection,currentsubsection]
%%\end{frame}
%%}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Outline}
\tableofcontents
% \pausesections
\end{frame}
\section{Solving linear equations}
\begin{frame}[fragile]
\frametitle{Solution of equations}
Consider,
\begin{align*}
3x + 2y - z & = 1 \\
2x - 2y + 4z & = -2 \\
-x + \frac{1}{2}y -z & = 0
\end{align*}
Solution:
\begin{align*}
x & = 1 \\
y & = -2 \\
z & = -2
\end{align*}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solving using Matrices}
Let us now look at how to solve this using \kwrd{matrices}
\begin{lstlisting}
In []: A = matrix([[3,2,-1],[2,-2,4],[-1, 0.5, -1]])
In []: b = matrix([[1], [-2], [0]])
In []: x = linalg.solve(A, b)
In []: Ax = dot(A, x)
In []: allclose(Ax, b)
Out[]: True
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solution:}
\begin{lstlisting}
In []: x
Out[]:
array([[ 1.],
[-2.],
[-2.]])
In []: Ax
Out[]:
matrix([[ 1.00000000e+00],
[ -2.00000000e+00],
[ 2.22044605e-16]])
\end{lstlisting}
\end{frame}
\section{Matrices}
\subsection{Initializing}
\begin{frame}[fragile]
\frametitle{Matrices: Initializing}
\begin{lstlisting}
In []: a = matrix([[1,2,3],
[4,5,6],
[7,8,9]])
In []: a
Out[]:
matrix([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
\end{lstlisting}
\end{frame}
\subsection{Basic Operations}
\begin{frame}[fragile]
\frametitle{Inverse of a Matrix}
\begin{small}
\begin{lstlisting}
In []: linalg.inv(A)
Out[]:
matrix([[ 0.07734807, 0.01657459, 0.32044199],
[ 0.09944751, -0.12154696, -0.01657459],
[-0.02762431, -0.07734807, 0.17127072]])
\end{lstlisting}
\end{small}
\end{frame}
\begin{frame}[fragile]
\frametitle{Determinant}
\begin{lstlisting}
In []: linalg.det(a)
Out[]: -9.5171266700777579e-16
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Computing Norms}
\begin{lstlisting}
In []: linalg.norm(a)
Out[]: 16.881943016134134
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Eigen Values and Eigen Matrix}
\begin{small}
\begin{lstlisting}
In []: linalg.eigvals(a)
Out[]: array([1.61168440e+01, -1.11684397e+00, -1.22196337e-15])
In []: linalg.eig(a)
Out[]:
(array([ 1.61168440e+01, -1.11684397e+00, -1.22196337e-15]),
matrix([[-0.23197069, -0.78583024, 0.40824829],
[-0.52532209, -0.08675134, -0.81649658],
[-0.8186735 , 0.61232756, 0.40824829]]))
\end{lstlisting}
\end{small}
\end{frame}
\section{Integration}
\subsection{Quadrature}
\begin{frame}[fragile]
\frametitle{Quadrature}
\begin{itemize}
\item We wish to find area under a curve
\item Area under $(sin(x) + x^2)$ in $(0,1)$
\item scipy has functions to do that
\end{itemize}
\small{\typ{In []: from scipy.integrate import quad}}
\begin{itemize}
\item Inputs - function to integrate, limits
\end{itemize}
\begin{lstlisting}
In []: x = 0
In []: integrate.quad(sin(x)+x**2, 0, 1)
\end{lstlisting}
\alert{\typ{error:}}
\typ{First argument must be a callable function.}
\end{frame}
\begin{frame}[fragile]
\frametitle{Functions - Definition}
\begin{lstlisting}
In []: def f(x):
return sin(x)+x**2
In []: integrate.quad(f, 0, 1)
\end{lstlisting}
\begin{itemize}
\item \typ{def}
\item arguments
\item \typ{return}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Functions - Calling them}
\begin{lstlisting}
In [15]: f()
---------------------------------------
\end{lstlisting}
\alert{\typ{TypeError:}}\typ{f() takes exactly 1 argument}
\typ{(0 given)}
\begin{lstlisting}
In []: f(0)
Out[]: 0.0
In []: f(1)
Out[]: 1.8414709848078965
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Functions - Default Arguments}
\begin{lstlisting}
In []: def f(x=1):
return sin(x)+x**2
In []: f(10)
Out[]: 99.455978889110625
In []: f(1)
Out[]: 1.8414709848078965
In []: f()
Out[]: 1.8414709848078965
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Functions - Keyword Arguments}
\begin{lstlisting}
In []: def f(x=1, y=pi):
return sin(y)+x**2
In []: f()
Out[]: 1.0000000000000002
In []: f(2)
Out[]: 4.0
In []: f(y=2)
Out[]: 1.9092974268256817
In []: f(y=pi/2,x=0)
Out[]: 1.0
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{More on functions}
\begin{itemize}
\item Scope of variables in the function is local
\item Mutable items are \alert{passed by reference}
\item First line after definition may be a documentation string
(\alert{recommended!})
\item Function definition and execution defines a name bound to the
function
\item You \emph{can} assign a variable to a function!
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Quadrature \ldots}
\begin{lstlisting}
In []: integrate.quad(f, 0, 1)
\end{lstlisting}
Returns the integral and an estimate of the absolute error in the result.
\end{frame}
\subsection{ODEs}
\begin{frame}[fragile]
\frametitle{ODE Integration}
We shall use the simple ODE of a simple pendulum.
\begin{equation*}
\ddot{\theta} = -\frac{g}{L}sin(\theta)
\end{equation*}
\begin{itemize}
\item This equation can be written as a system of two first order ODEs
\end{itemize}
\begin{align}
\dot{\theta} &= \omega \\
\dot{\omega} &= -\frac{g}{L}sin(\theta) \\
\text{At}\ t &= 0 : \nonumber \\
\theta = \theta_0\quad & \&\quad \omega = 0 \nonumber
\end{align}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solving ODEs using SciPy}
\begin{itemize}
\item We use the \typ{odeint} function from scipy to do the integration
\item Define a function as below
\end{itemize}
\begin{lstlisting}
In []: def pend_int(unknown, t, p):
.... theta, omega = unknown
.... g, L = p
.... f=[omega, -(g/L)*sin(theta)]
.... return f
....
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solving ODEs using SciPy \ldots}
\begin{itemize}
\item \typ{t} is the time variable \\
\item \typ{p} has the constants \\
\item \typ{initial} has the initial values
\end{itemize}
\begin{lstlisting}
In []: t = linspace(0, 10, 101)
In []: p=(-9.81, 0.2)
In []: initial = [10*2*pi/360, 0]
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solving ODEs using SciPy \ldots}
\small{\typ{In []: from scipy.integrate import odeint}}
\begin{lstlisting}
In []: pend_sol = odeint(pend_int,
initial,t,
args=(p,))
\end{lstlisting}
\end{frame}
\end{document}