Updated tot.tex and session 2 slides.
import numpy as np
import pylab as P
from enthought.mayavi import mlab
from scipy.integrate import odeint
######################################################################
def lorenz(x, y, z, s=10.,r=28., b=8./3.):
"""The Lorenz system."""
u = s*(y-x)
v = r*x -y - x*z
w = x*y - b*z
return u, v, w
def lorenz_ode(r, t):
x, y, z = r
u, v, w = lorenz(x, y, z)
return np.array([u, v, w])
def show_lorenz(new_fig=True):
x, y, z = np.mgrid[-50:50:100j,-50:50:100j,-10:60:70j]
u, v, w = lorenz(x, y, z)
if new_fig:
fig = mlab.figure(size=(600,600), bgcolor=(0, 0, 0))
# Plot the flow of trajectories with suitable parameters.
f = mlab.flow(x, y, z, u, v, w, line_width=3, colormap='Paired')
f.module_manager.scalar_lut_manager.reverse_lut = True
f.stream_tracer.integration_direction = 'both'
f.stream_tracer.maximum_propagation = 200
def show_lorenz_traj(start=(0.,0.,0.)):
t = np.linspace(0., 50., 2000)
ret = lorenz_traj(t, np.asarray(start))
x, y, z = ret[:,0], ret[:,1], ret[:,2]
mlab.plot3d(x, y, z, t, tube_radius=None)
def lorenz_traj(t, start=(0.,0.,0.)):
return odeint(lorenz_ode, start, t)
######################################################################
def convection_cell(x, y, z):
"""velocity field of a multi-axis convection cell [1], in
hydrodynamics, as defined by its components sampled on a grid.
"""
u = np.sin(np.pi*x) * np.cos(np.pi*z)
v = -2*np.sin(np.pi*y) * np.cos(2*np.pi*z)
w = np.cos(np.pi*x)*np.sin(np.pi*z) + np.cos(np.pi*y)*np.sin(2*np.pi*z)
return u, v, w
def show_convection1(new_fig=True):
x, y, z = np.mgrid[0:1:20j, 0:1:20j, 0:1:20j]
u, v, w = convection_cell(x, y, z)
if new_fig:
mlab.figure(size=(600,600))
mlab.quiver3d(u, v, w)
mlab.outline()
def show_convection2(new_fig=True):
x, y, z = np.mgrid[0:1:20j, 0:1:20j, 0:1:20j]
u, v, w = convection_cell(x, y, z)
if new_fig:
mlab.figure(size=(600,600))
src = mlab.pipeline.vector_field(u, v, w)
mlab.pipeline.vectors(src, mask_points=20, scale_factor=3.)
mlab.outline()
def show_convection3(new_fig=True):
x, y, z = np.mgrid[0:1:20j, 0:1:20j, 0:1:20j]
u, v, w = convection_cell(x, y, z)
if new_fig:
mlab.figure(fgcolor=(0., 0., 0.), bgcolor=(0.5, 0.5, 0.5),
size=(600,600))
src = mlab.pipeline.vector_field(u, v, w)
magnitude = mlab.pipeline.extract_vector_norm(src)
mlab.outline()
# We apply the following modules on the magnitude object, in order to
# be able to display the norm of the vectors, eg as the color.
iso = mlab.pipeline.iso_surface(magnitude, contours=[1.9, ],
opacity=0.3)
vec = mlab.pipeline.vectors(magnitude,
mask_points=40,
line_width=1,
color=(1, 1, 1),
scale_factor=4.)
flow = mlab.pipeline.streamline(magnitude,
seedtype='plane',
seed_visible=True,
seed_scale=0.5,
seed_resolution=1,
linetype='ribbon',)
vcp = mlab.pipeline.vector_cut_plane(magnitude, mask_points=2,
scale_factor=4,
colormap='jet',
plane_orientation='x_axes')
def test():
show_lorenz()
show_lorenz_traj((10, 50, 50))
show_convection1()
show_convection2()
show_convection3()
if __name__ == '__main__':
test()