--- a/day1/session6.tex Mon Jan 25 17:46:29 2010 +0530
+++ b/day1/session6.tex Mon Jan 25 17:53:03 2010 +0530
@@ -148,7 +148,7 @@
In []: A = array([[3,2,-1],
[2,-2,4],
[-1, 0.5, -1]])
- In []: b = array([[1], [-2], [0]])
+ In []: b = array([1, -2, 0])
In []: x = solve(A, b)
\end{lstlisting}
\end{frame}
@@ -157,22 +157,16 @@
\frametitle{Solution:}
\begin{lstlisting}
In []: x
-Out[]:
-array([[ 1.],
- [-2.],
- [-2.]])
+Out[]: array([ 1., -2., -2.])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Let's check!}
\begin{lstlisting}
-In []: Ax = dot(A,x)
+In []: Ax = dot(A, x)
In []: Ax
-Out[]:
-array([[ 1.00000000e+00],
- [ -2.00000000e+00],
- [ 2.22044605e-16]])
+Out[]: array([ 1.00000000e+00, -2.00000000e+00, -1.11022302e-16])
\end{lstlisting}
\begin{block}{}
The last term in the matrix is actually \alert{0}!\\
@@ -246,11 +240,26 @@
\begin{frame}[fragile]
\frametitle{\typ{fsolve}}
Find the root of $sin(x)+cos^2(x)$ nearest to $0$
+\vspace{-0.1in}
+\begin{center}
+\includegraphics[height=2.8in, interpolate=true]{data/fsolve}
+\end{center}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{\typ{fsolve}}
+Root of $sin(x)+cos^2(x)$ nearest to $0$
\begin{lstlisting}
-In []: fsolve(sin(x)+cos(x)**2, 0)
+In []: fsolve(sin(x)+cos(x)*cos(x), 0)
NameError: name 'x' is not defined
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{\typ{fsolve}}
+\begin{lstlisting}
In []: x = linspace(-pi, pi)
-In []: fsolve(sin(x)+cos(x)**2, 0)
+In []: fsolve(sin(x)+cos(x)*cos(x), 0)
\end{lstlisting}
\begin{small}
\alert{\typ{TypeError:}}
@@ -263,7 +272,7 @@
We have been using them all along. Now let's see how to define them.
\begin{lstlisting}
In []: def f(x):
- return sin(x)+cos(x)**2
+ return sin(x)+cos(x)*cos(x)
\end{lstlisting}
\begin{itemize}
\item \typ{def}
@@ -329,7 +338,8 @@
\begin{lstlisting}
In []: from scipy.integrate import odeint
In []: def epid(y, t):
- .... k, L = 0.00003, 25000
+ .... k = 0.00003
+ .... L = 25000
.... return k*y*(L-y)
....
\end{lstlisting}
@@ -379,8 +389,10 @@
\end{itemize}
\begin{lstlisting}
In []: def pend_int(initial, t):
- .... theta, omega = initial
- .... g, L = 9.81, 0.2
+ .... theta = initial[0]
+ .... omega = initial[1]
+ .... g = 9.81
+ .... L = 0.2
.... f=[omega, -(g/L)*sin(theta)]
.... return f
....
@@ -394,7 +406,7 @@
\item \typ{initial} has the initial values
\end{itemize}
\begin{lstlisting}
-In []: t = linspace(0, 10, 101)
+In []: t = linspace(0, 20, 101)
In []: initial = [10*2*pi/360, 0]
\end{lstlisting}
\end{frame}