diff -r 856470d9a952 -r 2cda9b04f142 day1/session6.tex --- a/day1/session6.tex Mon Jan 25 17:46:29 2010 +0530 +++ b/day1/session6.tex Mon Jan 25 17:53:03 2010 +0530 @@ -148,7 +148,7 @@ In []: A = array([[3,2,-1], [2,-2,4], [-1, 0.5, -1]]) - In []: b = array([[1], [-2], [0]]) + In []: b = array([1, -2, 0]) In []: x = solve(A, b) \end{lstlisting} \end{frame} @@ -157,22 +157,16 @@ \frametitle{Solution:} \begin{lstlisting} In []: x -Out[]: -array([[ 1.], - [-2.], - [-2.]]) +Out[]: array([ 1., -2., -2.]) \end{lstlisting} \end{frame} \begin{frame}[fragile] \frametitle{Let's check!} \begin{lstlisting} -In []: Ax = dot(A,x) +In []: Ax = dot(A, x) In []: Ax -Out[]: -array([[ 1.00000000e+00], - [ -2.00000000e+00], - [ 2.22044605e-16]]) +Out[]: array([ 1.00000000e+00, -2.00000000e+00, -1.11022302e-16]) \end{lstlisting} \begin{block}{} The last term in the matrix is actually \alert{0}!\\ @@ -246,11 +240,26 @@ \begin{frame}[fragile] \frametitle{\typ{fsolve}} Find the root of $sin(x)+cos^2(x)$ nearest to $0$ +\vspace{-0.1in} +\begin{center} +\includegraphics[height=2.8in, interpolate=true]{data/fsolve} +\end{center} +\end{frame} + +\begin{frame}[fragile] +\frametitle{\typ{fsolve}} +Root of $sin(x)+cos^2(x)$ nearest to $0$ \begin{lstlisting} -In []: fsolve(sin(x)+cos(x)**2, 0) +In []: fsolve(sin(x)+cos(x)*cos(x), 0) NameError: name 'x' is not defined +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{\typ{fsolve}} +\begin{lstlisting} In []: x = linspace(-pi, pi) -In []: fsolve(sin(x)+cos(x)**2, 0) +In []: fsolve(sin(x)+cos(x)*cos(x), 0) \end{lstlisting} \begin{small} \alert{\typ{TypeError:}} @@ -263,7 +272,7 @@ We have been using them all along. Now let's see how to define them. \begin{lstlisting} In []: def f(x): - return sin(x)+cos(x)**2 + return sin(x)+cos(x)*cos(x) \end{lstlisting} \begin{itemize} \item \typ{def} @@ -329,7 +338,8 @@ \begin{lstlisting} In []: from scipy.integrate import odeint In []: def epid(y, t): - .... k, L = 0.00003, 25000 + .... k = 0.00003 + .... L = 25000 .... return k*y*(L-y) .... \end{lstlisting} @@ -379,8 +389,10 @@ \end{itemize} \begin{lstlisting} In []: def pend_int(initial, t): - .... theta, omega = initial - .... g, L = 9.81, 0.2 + .... theta = initial[0] + .... omega = initial[1] + .... g = 9.81 + .... L = 0.2 .... f=[omega, -(g/L)*sin(theta)] .... return f .... @@ -394,7 +406,7 @@ \item \typ{initial} has the initial values \end{itemize} \begin{lstlisting} -In []: t = linspace(0, 10, 101) +In []: t = linspace(0, 20, 101) In []: initial = [10*2*pi/360, 0] \end{lstlisting} \end{frame}