144 [ 2, 5, -1, -9], |
144 [ 2, 5, -1, -9], |
145 [ 2, 1, -1, 3], |
145 [ 2, 1, -1, 3], |
146 [ 1, -3, 2, 7]]) |
146 [ 1, -3, 2, 7]]) |
147 \end{lstlisting} |
147 \end{lstlisting} |
148 \end{frame} |
148 \end{frame} |
|
149 |
|
150 \begin{frame}[fragile] |
|
151 \frametitle{Initializing some special matrices} |
|
152 \begin{small} |
|
153 \begin{lstlisting} |
|
154 In []: ones((3,5)) |
|
155 Out[]: |
|
156 array([[ 1., 1., 1., 1., 1.], |
|
157 [ 1., 1., 1., 1., 1.], |
|
158 [ 1., 1., 1., 1., 1.]]) |
|
159 |
|
160 In []: ones_like([1, 2, 3, 4, 5]) |
|
161 Out[]: array([1, 1, 1, 1, 1]) |
|
162 |
|
163 In []: identity(2) |
|
164 Out[]: |
|
165 array([[ 1., 0.], |
|
166 [ 0., 1.]]) |
|
167 \end{lstlisting} |
|
168 Also available \alert{\typ{zeros, zeros_like, empty, empty_like}} |
|
169 \end{small} |
|
170 \end{frame} |
|
171 |
149 |
172 |
150 \begin{frame}[fragile] |
173 \begin{frame}[fragile] |
151 \frametitle{Accessing elements} |
174 \frametitle{Accessing elements} |
152 \begin{lstlisting} |
175 \begin{lstlisting} |
153 In []: C = array([[1,1,2], |
176 In []: C = array([[1,1,2], |
424 %% \inctime{15} |
447 %% \inctime{15} |
425 %% \end{frame} |
448 %% \end{frame} |
426 |
449 |
427 \section{Least Squares Fit} |
450 \section{Least Squares Fit} |
428 \begin{frame}[fragile] |
451 \begin{frame}[fragile] |
429 \frametitle{$L$ vs. $T^2$} |
452 \frametitle{$L$ vs. $T^2$ - Scatter} |
430 \vspace{-0.15in} |
453 \vspace{-0.15in} |
431 \begin{figure} |
454 \begin{figure} |
432 \includegraphics[width=4in]{data/L-Tsq-points} |
455 \includegraphics[width=4in]{data/L-Tsq-points} |
433 \end{figure} |
456 \end{figure} |
434 \end{frame} |
457 \end{frame} |
435 |
458 |
436 \begin{frame}[fragile] |
459 \begin{frame}[fragile] |
437 \frametitle{$L$ vs. $T^2$} |
460 \frametitle{$L$ vs. $T^2$ - Line} |
438 \vspace{-0.15in} |
461 \vspace{-0.15in} |
439 \begin{figure} |
462 \begin{figure} |
440 \includegraphics[width=4in]{data/L-Tsq-Line} |
463 \includegraphics[width=4in]{data/L-Tsq-Line} |
441 \end{figure} |
464 \end{figure} |
442 \end{frame} |
465 \end{frame} |
443 |
466 |
444 \begin{frame}[fragile] |
467 \begin{frame}[fragile] |
445 \frametitle{Least Squares Fit} |
468 \frametitle{$L$ vs. $T^2$ } |
|
469 \frametitle{$L$ vs. $T^2$ - Least Square Fit} |
446 \vspace{-0.15in} |
470 \vspace{-0.15in} |
447 \begin{figure} |
471 \begin{figure} |
448 \includegraphics[width=4in]{data/least-sq-fit} |
472 \includegraphics[width=4in]{data/least-sq-fit} |
449 \end{figure} |
473 \end{figure} |
450 \end{frame} |
474 \end{frame} |
482 \frametitle{Generating $A$} |
506 \frametitle{Generating $A$} |
483 \begin{lstlisting} |
507 \begin{lstlisting} |
484 In []: A = array([L, ones_like(L)]) |
508 In []: A = array([L, ones_like(L)]) |
485 In []: A = A.T |
509 In []: A = A.T |
486 \end{lstlisting} |
510 \end{lstlisting} |
487 \begin{small} |
|
488 \begin{block}{} |
|
489 \begin{lstlisting} |
|
490 In []: ones((3,5)) |
|
491 Out[]: |
|
492 array([[ 1., 1., 1., 1., 1.], |
|
493 [ 1., 1., 1., 1., 1.], |
|
494 [ 1., 1., 1., 1., 1.]]) |
|
495 |
|
496 In []: ones_like([1, 2, 3, 4, 5]) |
|
497 Out[]: array([1, 1, 1, 1, 1]) |
|
498 \end{lstlisting} |
|
499 Also available \alert{\typ{zeros, zeros_like, empty, empty_like}} |
|
500 \end{block} |
|
501 \end{small} |
|
502 |
|
503 %% \begin{itemize} |
511 %% \begin{itemize} |
504 %% \item A is also called a Van der Monde matrix |
512 %% \item A is also called a Van der Monde matrix |
505 %% \item It can also be generated using \typ{vander} |
513 %% \item It can also be generated using \typ{vander} |
506 %% \end{itemize} |
514 %% \end{itemize} |
507 %% \begin{lstlisting} |
515 %% \begin{lstlisting} |