438 \frametitle{Generating $A$} |
438 \frametitle{Generating $A$} |
439 \begin{lstlisting} |
439 \begin{lstlisting} |
440 In []: A = array([L, ones_like(L)]) |
440 In []: A = array([L, ones_like(L)]) |
441 In []: A = A.T |
441 In []: A = A.T |
442 \end{lstlisting} |
442 \end{lstlisting} |
|
443 \begin{small} |
|
444 \begin{block}{} |
|
445 \begin{lstlisting} |
|
446 In []: ones((3,5)) |
|
447 Out[]: |
|
448 array([[ 1., 1., 1., 1., 1.], |
|
449 [ 1., 1., 1., 1., 1.], |
|
450 [ 1., 1., 1., 1., 1.]]) |
|
451 |
|
452 In []: ones_like([1, 2, 3, 4, 5]) |
|
453 Out[]: array([1, 1, 1, 1, 1]) |
|
454 \end{lstlisting} |
|
455 Also available \alert{\typ{zeros, zeros_like, empty, empty_like}} |
|
456 \end{block} |
|
457 \end{small} |
|
458 |
443 %% \begin{itemize} |
459 %% \begin{itemize} |
444 %% \item A is also called a Van der Monde matrix |
460 %% \item A is also called a Van der Monde matrix |
445 %% \item It can also be generated using \typ{vander} |
461 %% \item It can also be generated using \typ{vander} |
446 %% \end{itemize} |
462 %% \end{itemize} |
447 %% \begin{lstlisting} |
463 %% \begin{lstlisting} |