Added changes to ode presentation.
--- a/presentations/ode.tex Mon Apr 19 14:59:29 2010 +0530
+++ b/presentations/ode.tex Mon Apr 19 15:12:54 2010 +0530
@@ -78,13 +78,39 @@
\begin{block}{Prerequisite}
\begin{itemize}
\item Understanding of Arrays.
- \item Python functions.
- \item lists.
+ \item functions and lists
\end{itemize}
\end{block}
\end{frame}
\begin{frame}[fragile]
+\frametitle{Solving ODEs using SciPy}
+\begin{itemize}
+\item Let's consider the spread of an epidemic in a population
+\item $\frac{dy}{dt} = ky(L-y)$ gives the spread of the disease
+\item L is the total population.
+\item Use L = 25000, k = 0.00003, y(0) = 250
+\end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]
+\frametitle{ODEs - Simple Pendulum}
+We shall use the simple ODE of a simple pendulum.
+\begin{equation*}
+\ddot{\theta} = -\frac{g}{L}sin(\theta)
+\end{equation*}
+\begin{itemize}
+\item This equation can be written as a system of two first order ODEs
+\end{itemize}
+\begin{align}
+\dot{\theta} &= \omega \\
+\dot{\omega} &= -\frac{g}{L}sin(\theta) \\
+ \text{At}\ t &= 0 : \nonumber \\
+ \theta = \theta_0(10^o)\quad & \&\quad \omega = 0\ (Initial\ values)\nonumber
+\end{align}
+\end{frame}
+
+\begin{frame}[fragile]
\frametitle{Summary}
\begin{block}{}
Solving ordinary differential equations