# HG changeset patch # User Shantanu # Date 1271670174 -19800 # Node ID 62be6012121fd01f3674f82ccdb08264ddddb6a0 # Parent a63a14de8584acc8aa4cb1e8b8f30e8ea275c89d Added changes to ode presentation. diff -r a63a14de8584 -r 62be6012121f presentations/ode.tex --- a/presentations/ode.tex Mon Apr 19 14:59:29 2010 +0530 +++ b/presentations/ode.tex Mon Apr 19 15:12:54 2010 +0530 @@ -78,13 +78,39 @@ \begin{block}{Prerequisite} \begin{itemize} \item Understanding of Arrays. - \item Python functions. - \item lists. + \item functions and lists \end{itemize} \end{block} \end{frame} \begin{frame}[fragile] +\frametitle{Solving ODEs using SciPy} +\begin{itemize} +\item Let's consider the spread of an epidemic in a population +\item $\frac{dy}{dt} = ky(L-y)$ gives the spread of the disease +\item L is the total population. +\item Use L = 25000, k = 0.00003, y(0) = 250 +\end{itemize} +\end{frame} + +\begin{frame}[fragile] +\frametitle{ODEs - Simple Pendulum} +We shall use the simple ODE of a simple pendulum. +\begin{equation*} +\ddot{\theta} = -\frac{g}{L}sin(\theta) +\end{equation*} +\begin{itemize} +\item This equation can be written as a system of two first order ODEs +\end{itemize} +\begin{align} +\dot{\theta} &= \omega \\ +\dot{\omega} &= -\frac{g}{L}sin(\theta) \\ + \text{At}\ t &= 0 : \nonumber \\ + \theta = \theta_0(10^o)\quad & \&\quad \omega = 0\ (Initial\ values)\nonumber +\end{align} +\end{frame} + +\begin{frame}[fragile] \frametitle{Summary} \begin{block}{} Solving ordinary differential equations