thirdparty/google_appengine/google/appengine/api/images/images_stub.py
author Lennard de Rijk <ljvderijk@gmail.com>
Sat, 28 Feb 2009 21:12:20 +0000
changeset 1567 b5589e656ed1
parent 1278 a7766286a7be
child 2273 e4cb9c53db3e
permissions -rwxr-xr-x
Member template in organization is now called Contributor Template. This matches the Organization Application, this way the information is automatically transferred to the new Organization. Note that the template shows raw HTML, we might change the template tag to use |safe for it's input to show the true layout of the template. I've sent an email to SRabbelier about that. Patch by: Lennard de Rijk Reviewed by: to-be-reviewed

#!/usr/bin/env python
#
# Copyright 2007 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Stub version of the images API."""



import logging
import StringIO

try:
  import PIL
  from PIL import _imaging
  from PIL import Image
except ImportError:
  import _imaging
  import Image

from google.appengine.api import apiproxy_stub
from google.appengine.api import images
from google.appengine.api.images import images_service_pb
from google.appengine.runtime import apiproxy_errors


class ImagesServiceStub(apiproxy_stub.APIProxyStub):
  """Stub version of images API to be used with the dev_appserver."""

  def __init__(self, service_name='images'):
    """Preloads PIL to load all modules in the unhardened environment.

    Args:
      service_name: Service name expected for all calls.
    """
    super(ImagesServiceStub, self).__init__(service_name)
    Image.init()

  def _Dynamic_Transform(self, request, response):
    """Trivial implementation of ImagesService::Transform.

    Based off documentation of the PIL library at
    http://www.pythonware.com/library/pil/handbook/index.htm

    Args:
      request: ImagesTransformRequest, contains image request info.
      response: ImagesTransformResponse, contains transformed image.
    """
    image = request.image().content()
    if not image:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.NOT_IMAGE)

    image = StringIO.StringIO(image)
    try:
      original_image = Image.open(image)
    except IOError:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_IMAGE_DATA)

    img_format = original_image.format
    if img_format not in ("BMP", "GIF", "ICO", "JPEG", "PNG", "TIFF"):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.NOT_IMAGE)

    new_image = self._ProcessTransforms(original_image,
                                        request.transform_list())

    response_value = self._EncodeImage(new_image, request.output())
    response.mutable_image().set_content(response_value)

  def _EncodeImage(self, image, output_encoding):
    """Encode the given image and return it in string form.

    Args:
      image: PIL Image object, image to encode.
      output_encoding: ImagesTransformRequest.OutputSettings object.

    Returns:
      str with encoded image information in given encoding format.
    """
    image_string = StringIO.StringIO()

    image_encoding = "PNG"

    if (output_encoding.mime_type() == images_service_pb.OutputSettings.JPEG):
      image_encoding = "JPEG"

      image = image.convert("RGB")

    image.save(image_string, image_encoding)

    return image_string.getvalue()

  def _ValidateCropArg(self, arg):
    """Check an argument for the Crop transform.

    Args:
      arg: float, argument to Crop transform to check.

    Raises:
      apiproxy_errors.ApplicationError on problem with argument.
    """
    if not isinstance(arg, float):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

    if not (0 <= arg <= 1.0):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

  def _CalculateNewDimensions(self,
                              current_width,
                              current_height,
                              req_width,
                              req_height):
    """Get new resize dimensions keeping the current aspect ratio.

    This uses the more restricting of the two requested values to determine
    the new ratio.

    Args:
      current_width: int, current width of the image.
      current_height: int, current height of the image.
      req_width: int, requested new width of the image.
      req_height: int, requested new height of the image.

    Returns:
      tuple (width, height) which are both ints of the new ratio.
    """

    width_ratio = float(req_width) / current_width
    height_ratio = float(req_height) / current_height

    if req_width == 0 or (width_ratio > height_ratio and req_height != 0):
      return int(height_ratio * current_width), req_height
    else:
      return req_width, int(width_ratio * current_height)

  def _Resize(self, image, transform):
    """Use PIL to resize the given image with the given transform.

    Args:
      image: PIL.Image.Image object to resize.
      transform: images_service_pb.Transform to use when resizing.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if the resize data given is bad.
    """
    width = 0
    height = 0

    if transform.has_width():
      width = transform.width()
      if width < 0 or 4000 < width:
        raise apiproxy_errors.ApplicationError(
            images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

    if transform.has_height():
      height = transform.height()
      if height < 0 or 4000 < height:
        raise apiproxy_errors.ApplicationError(
            images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

    current_width, current_height = image.size
    new_width, new_height = self._CalculateNewDimensions(current_width,
                                                         current_height,
                                                         width,
                                                         height)

    return image.resize((new_width, new_height), Image.ANTIALIAS)

  def _Rotate(self, image, transform):
    """Use PIL to rotate the given image with the given transform.

    Args:
      image: PIL.Image.Image object to rotate.
      transform: images_service_pb.Transform to use when rotating.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if the rotate data given is bad.
    """
    degrees = transform.rotate()
    if degrees < 0 or degrees % 90 != 0:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
    degrees %= 360

    degrees = 360 - degrees
    return image.rotate(degrees)

  def _Crop(self, image, transform):
    """Use PIL to crop the given image with the given transform.

    Args:
      image: PIL.Image.Image object to crop.
      transform: images_service_pb.Transform to use when cropping.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if the crop data given is bad.
    """
    left_x = 0.0
    top_y = 0.0
    right_x = 1.0
    bottom_y = 1.0

    if transform.has_crop_left_x():
      left_x = transform.crop_left_x()
      self._ValidateCropArg(left_x)

    if transform.has_crop_top_y():
      top_y = transform.crop_top_y()
      self._ValidateCropArg(top_y)

    if transform.has_crop_right_x():
      right_x = transform.crop_right_x()
      self._ValidateCropArg(right_x)

    if transform.has_crop_bottom_y():
      bottom_y = transform.crop_bottom_y()
      self._ValidateCropArg(bottom_y)

    width, height = image.size

    box = (int(transform.crop_left_x() * width),
           int(transform.crop_top_y() * height),
           int(transform.crop_right_x() * width),
           int(transform.crop_bottom_y() * height))

    return image.crop(box)

  def _ProcessTransforms(self, image, transforms):
    """Execute PIL operations based on transform values.

    Args:
      image: PIL.Image.Image instance, image to manipulate.
      trasnforms: list of ImagesTransformRequest.Transform objects.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if we are passed more than one of the same type of
      transform.
    """
    new_image = image
    if len(transforms) > images.MAX_TRANSFORMS_PER_REQUEST:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
    for transform in transforms:
      if transform.has_width() or transform.has_height():
        new_image = self._Resize(new_image, transform)

      elif transform.has_rotate():
        new_image = self._Rotate(new_image, transform)

      elif transform.has_horizontal_flip():
        new_image = new_image.transpose(Image.FLIP_LEFT_RIGHT)

      elif transform.has_vertical_flip():
        new_image = new_image.transpose(Image.FLIP_TOP_BOTTOM)

      elif (transform.has_crop_left_x() or
          transform.has_crop_top_y() or
          transform.has_crop_right_x() or
          transform.has_crop_bottom_y()):
        new_image = self._Crop(new_image, transform)

      elif transform.has_autolevels():
        logging.info("I'm Feeling Lucky autolevels will be visible once this "
                     "application is deployed.")
      else:
        logging.warn("Found no transformations found to perform.")

    return new_image