thirdparty/google_appengine/google/appengine/api/images/images_stub.py
author Pawel Solyga <Pawel.Solyga@gmail.com>
Sun, 16 Nov 2008 12:48:23 +0000
changeset 484 6364f8b0656b
parent 109 620f9b141567
child 686 df109be0567c
permissions -rwxr-xr-x
Add an e-mail dispatcher that can be used to send messages via the website. Add base and invitation templates that can be used with email dispatcher to send invitation emails. Please read the module doc string for more information how to use it. Patch by: Lennard de Rijk, Pawel Solyga

#!/usr/bin/env python
#
# Copyright 2007 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Stub version of the images API."""



import logging
import StringIO

import PIL
from PIL import _imaging
from PIL import Image

from google.appengine.api import images
from google.appengine.api.images import images_service_pb
from google.appengine.runtime import apiproxy_errors


class ImagesServiceStub(object):
  """Stub version of images API to be used with the dev_appserver."""

  def __init__(self):
    """Preloads PIL to load all modules in the unhardened environment."""
    Image.init()

  def MakeSyncCall(self, service, call, request, response):
    """Main entry point.

    Args:
      service: str, must be 'images'.
      call: str, name of the RPC to make, must be part of ImagesService.
      request: pb object, corresponding args to the 'call' argument.
      response: pb object, return value for the 'call' argument.
    """
    assert service == "images"
    assert request.IsInitialized()

    attr = getattr(self, "_Dynamic_" + call)
    attr(request, response)

  def _Dynamic_Transform(self, request, response):
    """Trivial implementation of ImagesService::Transform.

    Based off documentation of the PIL library at
    http://www.pythonware.com/library/pil/handbook/index.htm

    Args:
      request: ImagesTransformRequest, contains image request info.
      response: ImagesTransformResponse, contains transformed image.
    """
    image = request.image().content()
    if not image:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.NOT_IMAGE)

    image = StringIO.StringIO(image)
    try:
      original_image = Image.open(image)
    except IOError:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_IMAGE_DATA)

    img_format = original_image.format
    if img_format not in ("BMP", "GIF", "ICO", "JPEG", "PNG", "TIFF"):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.NOT_IMAGE)

    new_image = self._ProcessTransforms(original_image,
                                        request.transform_list())

    response_value = self._EncodeImage(new_image, request.output())
    response.mutable_image().set_content(response_value)

  def _EncodeImage(self, image, output_encoding):
    """Encode the given image and return it in string form.

    Args:
      image: PIL Image object, image to encode.
      output_encoding: ImagesTransformRequest.OutputSettings object.

    Returns:
      str with encoded image information in given encoding format.
    """
    image_string = StringIO.StringIO()

    image_encoding = "PNG"

    if (output_encoding.mime_type() == images_service_pb.OutputSettings.JPEG):
      image_encoding = "JPEG"

      image = image.convert("RGB")

    image.save(image_string, image_encoding)

    return image_string.getvalue()

  def _ValidateCropArg(self, arg):
    """Check an argument for the Crop transform.

    Args:
      arg: float, argument to Crop transform to check.

    Raises:
      apiproxy_errors.ApplicationError on problem with argument.
    """
    if not isinstance(arg, float):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

    if not (0 <= arg <= 1.0):
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

  def _CalculateNewDimensions(self,
                              current_width,
                              current_height,
                              req_width,
                              req_height):
    """Get new resize dimensions keeping the current aspect ratio.

    This uses the more restricting of the two requested values to determine
    the new ratio.

    Args:
      current_width: int, current width of the image.
      current_height: int, current height of the image.
      req_width: int, requested new width of the image.
      req_height: int, requested new height of the image.

    Returns:
      tuple (width, height) which are both ints of the new ratio.
    """

    width_ratio = float(req_width) / current_width
    height_ratio = float(req_height) / current_height

    if req_width == 0 or (width_ratio > height_ratio and req_height != 0):
      return int(height_ratio * current_width), req_height
    else:
      return req_width, int(width_ratio * current_height)

  def _Resize(self, image, transform):
    """Use PIL to resize the given image with the given transform.

    Args:
      image: PIL.Image.Image object to resize.
      transform: images_service_pb.Transform to use when resizing.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if the resize data given is bad.
    """
    width = 0
    height = 0

    if transform.has_width():
      width = transform.width()
      if width < 0 or 4000 < width:
        raise apiproxy_errors.ApplicationError(
            images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

    if transform.has_height():
      height = transform.height()
      if height < 0 or 4000 < height:
        raise apiproxy_errors.ApplicationError(
            images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)

    current_width, current_height = image.size
    new_width, new_height = self._CalculateNewDimensions(current_width,
                                                         current_height,
                                                         width,
                                                         height)

    return image.resize((new_width, new_height), Image.ANTIALIAS)

  def _Rotate(self, image, transform):
    """Use PIL to rotate the given image with the given transform.

    Args:
      image: PIL.Image.Image object to rotate.
      transform: images_service_pb.Transform to use when rotating.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if the rotate data given is bad.
    """
    degrees = transform.rotate()
    if degrees < 0 or degrees % 90 != 0:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
    degrees %= 360

    degrees = 360 - degrees
    return image.rotate(degrees)

  def _Crop(self, image, transform):
    """Use PIL to crop the given image with the given transform.

    Args:
      image: PIL.Image.Image object to crop.
      transform: images_service_pb.Transform to use when cropping.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if the crop data given is bad.
    """
    left_x = 0.0
    top_y = 0.0
    right_x = 1.0
    bottom_y = 1.0

    if transform.has_crop_left_x():
      left_x = transform.crop_left_x()
      self._ValidateCropArg(left_x)

    if transform.has_crop_top_y():
      top_y = transform.crop_top_y()
      self._ValidateCropArg(top_y)

    if transform.has_crop_right_x():
      right_x = transform.crop_right_x()
      self._ValidateCropArg(right_x)

    if transform.has_crop_bottom_y():
      bottom_y = transform.crop_bottom_y()
      self._ValidateCropArg(bottom_y)

    width, height = image.size

    box = (int(transform.crop_left_x() * width),
           int(transform.crop_top_y() * height),
           int(transform.crop_right_x() * width),
           int(transform.crop_bottom_y() * height))

    return image.crop(box)

  def _CheckTransformCount(self, transform_map, req_transform):
    """Check that the requested transform hasn't already been set in map.

    Args:
      transform_map: {images_service_pb.ImagesServiceTransform: boolean}, map
        to use to determine if the requested transform has been called.
      req_transform: images_service_pb.ImagesServiceTransform, the requested
        transform.

    Raises:
      BadRequestError if we are passed more than one of the same type of
      transform.
    """
    if req_transform in transform_map:
      raise apiproxy_errors.ApplicationError(
          images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA)
    transform_map[req_transform] = True

  def _ProcessTransforms(self, image, transforms):
    """Execute PIL operations based on transform values.

    Args:
      image: PIL.Image.Image instance, image to manipulate.
      trasnforms: list of ImagesTransformRequest.Transform objects.

    Returns:
      PIL.Image.Image with transforms performed on it.

    Raises:
      BadRequestError if we are passed more than one of the same type of
      transform.
    """
    new_image = image
    transform_map = {}
    for transform in transforms:
      if transform.has_width() or transform.has_height():
        self._CheckTransformCount(
            transform_map,
            images_service_pb.ImagesServiceTransform.RESIZE
        )

        new_image = self._Resize(new_image, transform)

      elif transform.has_rotate():
        self._CheckTransformCount(
            transform_map,
            images_service_pb.ImagesServiceTransform.ROTATE
        )

        new_image = self._Rotate(new_image, transform)

      elif transform.has_horizontal_flip():
        self._CheckTransformCount(
            transform_map,
            images_service_pb.ImagesServiceTransform.HORIZONTAL_FLIP
        )

        new_image = new_image.transpose(Image.FLIP_LEFT_RIGHT)

      elif transform.has_vertical_flip():
        self._CheckTransformCount(
            transform_map,
            images_service_pb.ImagesServiceTransform.VERTICAL_FLIP
        )

        new_image = new_image.transpose(Image.FLIP_TOP_BOTTOM)

      elif (transform.has_crop_left_x() or
          transform.has_crop_top_y() or
          transform.has_crop_right_x() or
          transform.has_crop_bottom_y()):
        self._CheckTransformCount(
            transform_map,
            images_service_pb.ImagesServiceTransform.CROP
        )

        new_image = self._Crop(new_image, transform)

      elif transform.has_autolevels():
        self._CheckTransformCount(
            transform_map,
            images_service_pb.ImagesServiceTransform.IM_FEELING_LUCKY
        )
        logging.info("I'm Feeling Lucky autolevels will be visible once this "
                     "application is deployed.")
      else:
        logging.warn("Found no transformations found to perform.")

    return new_image