0
|
1 |
#!/usr/bin/env python
|
|
2 |
# 12.11
|
|
3 |
|
|
4 |
import os, sys
|
|
5 |
sys.path += [os.getcwdu() + os.sep + ".." + os.sep + "python"]
|
|
6 |
|
|
7 |
import pylab as pl
|
|
8 |
from xdync import xdync
|
|
9 |
from zpowk import zpowk
|
|
10 |
from polyfuncs import polmul, poladd
|
|
11 |
|
|
12 |
def gpc_pid(A, dA, B, dB, C, dC, N1, N2, Nu, lambda1, gamm, gamma_y):
|
|
13 |
Adelta = pl.convolve(A,[1, -1])
|
|
14 |
G = pl.array([])
|
|
15 |
Gtilda1 = pl.array([])
|
|
16 |
for i in range(N1, N2+1):
|
|
17 |
zi=zpowk(i)[0]
|
|
18 |
E, dE, F, dF = xdync(Adelta, dA+1, zi, i, C, dC)[:4]
|
|
19 |
Gtilda, dGtilda, Gbar, dGbar = xdync(C, dC, zi, i, E*B, dE+dB)[:4]
|
|
20 |
Gtilda = pl.atleast_1d(Gtilda.squeeze())
|
|
21 |
Gtilda1 = pl.empty(i)
|
|
22 |
for j in range(i):
|
|
23 |
Gtilda1[j] = Gtilda[i-j-1]
|
|
24 |
if i <= Nu-1:
|
|
25 |
Gtilda2 = pl.zeros(Nu)
|
|
26 |
Gtilda2[:i] = Gtilda1
|
|
27 |
if pl.size(G) is not 0:
|
|
28 |
G = pl.vstack((G, Gtilda2))
|
|
29 |
else:
|
|
30 |
G = Gtilda2
|
|
31 |
else:
|
|
32 |
G = pl.vstack((G, Gtilda1[:Nu]))
|
|
33 |
|
|
34 |
es=sum(pl.atleast_1d(C))/sum(pl.atleast_1d(A))
|
|
35 |
gs=sum(pl.atleast_1d(B))/sum(pl.atleast_1d(A))
|
|
36 |
F_s=es * A
|
|
37 |
G_s=[]
|
|
38 |
|
|
39 |
for i in range(1, Nu+1):
|
|
40 |
if (Nu-i) == 0:
|
|
41 |
row= gs * pl.ones(i)
|
|
42 |
else:
|
|
43 |
row = gs * pl.ones(i)
|
|
44 |
row = pl.column_stack((row, pl.zeros((Nu-i,Nu-i))))
|
|
45 |
row = row.squeeze()
|
|
46 |
if pl.size(G_s) is not 0:
|
|
47 |
G_s = pl.row_stack((G_s, row))
|
|
48 |
else:
|
|
49 |
G_s = row
|
|
50 |
|
|
51 |
lambda_mat = lambda1 * pl.identity(Nu)
|
|
52 |
gamma_mat = gamm * pl.identity(Nu)
|
|
53 |
gamma_y_mat = gamma_y * pl.identity(N2-N1+1)
|
|
54 |
mat1 = pl.inv(pl.dot(G.T, pl.dot(gamma_y_mat, G))+lambda_mat+pl.dot(G_s.T, pl.dot(gamma_mat,G_s)))
|
|
55 |
mat2 = pl.dot(mat1, pl.dot(G.T, gamma_y_mat))
|
|
56 |
mat2_s = pl.dot(mat1, pl.dot(G_s.T, gamma_mat))
|
|
57 |
h_s= sum(mat2_s[0,:])
|
|
58 |
h = mat2[0,:]
|
|
59 |
T = C
|
|
60 |
R = C * (sum(h)+h_s)
|
|
61 |
S = 0
|
|
62 |
for i in range (N1, N2+1):
|
|
63 |
zi=zpowk(i)[0]
|
|
64 |
E, dE, F, dF = xdync(Adelta, dA+1, zi, i, C, dC)[:4]
|
|
65 |
Gtilda, dGtilda, Gbar, dGbar = xdync(C, dC, zi, i, E*B, dE+dB)[:4]
|
|
66 |
S += F*h[i-1]
|
|
67 |
S += F_s*h_s
|
|
68 |
S = S.squeeze()
|
|
69 |
if len(A) == 3:
|
|
70 |
Kp = S[0] - R - S[2]
|
|
71 |
Ki = R
|
|
72 |
Kd = S[2]
|
|
73 |
else:
|
|
74 |
Kp = S[1] - R
|
|
75 |
Ki = R
|
|
76 |
Kd = 0
|
|
77 |
return Kp, Ki, Kd
|
|
78 |
|