Merged branches.
authorSantosh G. Vattam <vattam.santosh@gmail.com>
Tue, 06 Oct 2009 18:45:01 +0530
changeset 43 ef2afc5ceb3f
parent 42 3e554af428a4 (current diff)
parent 41 64177498937a (diff)
child 44 dd3b9995dc87
child 47 21de307e6823
Merged branches.
Binary file day2/data/array_3x5x8.png has changed
Binary file day2/data/broadcast_2D.png has changed
Binary file day2/data/broadcast_scalar.png has changed
Binary file day2/data/cobweb.png has changed
--- a/day2/session1.tex	Tue Oct 06 18:43:15 2009 +0530
+++ b/day2/session1.tex	Tue Oct 06 18:45:01 2009 +0530
@@ -326,7 +326,10 @@
     \begin{enumerate}
     \item Convert an RGB image to Grayscale. $ Y = 0.5R + 0.25G + 0.25B $
     \item Scale the image to 50\%
-    \item Introduce some random noise?
+    \item Introduce some random noise
+    \item Smooth the image using a mean filter
+      \\\small{Take the mean of all the neighbouring elements}
+      \\\small{How fast can you do it?}
     \end{enumerate}
 \inctime{15}
 \end{frame}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/day2/session2.tex	Tue Oct 06 18:45:01 2009 +0530
@@ -0,0 +1,366 @@
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Tutorial slides on Python.
+%
+% Author: Prabhu Ramachandran <prabhu at aero.iitb.ac.in>
+% Copyright (c) 2005-2008, Prabhu Ramachandran
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\documentclass[14pt,compress]{beamer}
+%\documentclass[draft]{beamer}
+%\documentclass[compress,handout]{beamer}
+%\usepackage{pgfpages} 
+%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
+
+% Modified from: generic-ornate-15min-45min.de.tex
+\mode<presentation>
+{
+  \usetheme{Warsaw}
+  \useoutertheme{split}
+  \setbeamercovered{transparent}
+}
+
+\usepackage[english]{babel}
+\usepackage[latin1]{inputenc}
+%\usepackage{times}
+\usepackage[T1]{fontenc}
+
+% Taken from Fernando's slides.
+\usepackage{ae,aecompl}
+\usepackage{mathpazo,courier,euler}
+\usepackage[scaled=.95]{helvet}
+
+\definecolor{darkgreen}{rgb}{0,0.5,0}
+
+\usepackage{listings}
+\lstset{language=Python,
+    basicstyle=\ttfamily\bfseries,
+    commentstyle=\color{red}\itshape,
+  stringstyle=\color{darkgreen},
+  showstringspaces=false,
+  keywordstyle=\color{blue}\bfseries}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Macros
+\setbeamercolor{emphbar}{bg=blue!20, fg=black}
+\newcommand{\emphbar}[1]
+{\begin{beamercolorbox}[rounded=true]{emphbar} 
+      {#1}
+ \end{beamercolorbox}
+}
+\newcounter{time}
+\setcounter{time}{0}
+\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
+
+\newcommand{\typ}[1]{\lstinline{#1}}
+
+\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}}  }
+
+%%% This is from Fernando's setup.
+% \usepackage{color}
+% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
+% % Use and configure listings package for nicely formatted code
+% \usepackage{listings}
+% \lstset{
+%    language=Python,
+%    basicstyle=\small\ttfamily,
+%    commentstyle=\ttfamily\color{blue},
+%    stringstyle=\ttfamily\color{orange},
+%    showstringspaces=false,
+%    breaklines=true,
+%    postbreak = \space\dots
+% }
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Title page
+\title[]{Numerical Computing with Numpy \& Scipy}
+
+\author[FOSSEE Team] {Asokan Pichai\\Prabhu Ramachandran}
+
+\institute[FOSSEE] {FOSSEE Team}
+\date[] {11, October 2009}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
+%\logo{\pgfuseimage{iitmlogo}}
+
+
+%% Delete this, if you do not want the table of contents to pop up at
+%% the beginning of each subsection:
+\AtBeginSubsection[]
+{
+  \begin{frame}<beamer>
+    \frametitle{Outline}
+    \tableofcontents[currentsection,currentsubsection]
+  \end{frame}
+}
+
+\AtBeginSection[]
+{
+  \begin{frame}<beamer>
+    \frametitle{Outline}
+    \tableofcontents[currentsection,currentsubsection]
+  \end{frame}
+}
+
+% If you wish to uncover everything in a step-wise fashion, uncomment
+% the following command: 
+%\beamerdefaultoverlayspecification{<+->}
+
+%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% DOCUMENT STARTS
+\begin{document}
+
+\begin{frame}
+  \maketitle
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Broadcasting}
+  \begin{itemize}
+    \item Used so that functions can take inputs that are not of the same shape.
+    \item 2 rules -
+      \begin{enumerate}
+      \item 1 (repeatedly) pre-pended to shapes of smaller arrays
+      \item Size 1 in a dimension -> Largest size in that dimension
+      \end{enumerate}
+  \end{itemize}
+  \begin{columns}
+    \column{0.65\textwidth}
+    \hspace*{-1.5in}
+    \begin{lstlisting}
+      >>> x = np.arange(4)
+      >>> x+3
+      array([3, 4, 5, 6])
+    \end{lstlisting}
+    \column{0.35\textwidth}
+    \includegraphics[height=0.7in, interpolate=true]{data/broadcast_scalar}
+  \end{columns}
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Broadcasting in 3D}
+    \begin{lstlisting}
+      >>> x = np.zeros((3, 5))
+      >>> y = np.zeros(8)
+      >>> (x[..., None] + y).shape
+      (3, 5, 8)
+    \end{lstlisting}
+    \begin{figure}
+      \begin{center}
+      \includegraphics[height=1.5in, interpolate=true]{data/array_3x5x8}        
+      \end{center}
+    \end{figure}
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Copies \& Views}
+  \begin{lstlisting}
+    >>> a = array([[1,2,3], [4,5,6],     
+                   [7,8,9]])
+    >>> a[0,1:3]
+    array([2, 3])
+    >>> a[0::2,0::2]
+    array([[1, 3],
+          [7, 9]])
+  \end{lstlisting}
+  \begin{itemize}
+  \item Slicing and Striding just reference the same memory
+  \item They produce views of the data, not copies
+  \end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Copies contd \ldots}
+  \begin{lstlisting}
+    >>> a[np.array([0,1,2])]
+    array([[1, 2, 3],
+           [4, 5, 6],
+           [7, 8, 9]])
+  \end{lstlisting}
+  \begin{itemize}
+  \item Index arrays or Boolean arrays produce copies
+  \end{itemize}
+\inctime{15}
+\end{frame}
+
+\begin{frame}
+  \frametitle{More Numpy Functions \& Methods}
+  More functions
+  \begin{itemize}
+    \item \typ{take}
+    \item \typ{choose}
+    \item \typ{where}
+    \item \typ{compress}
+    \item \typ{concatenate}
+  \end{itemize}
+  Ufunc methods 
+  \begin{itemize}
+    \item \typ{reduce}
+    \item \typ{accumulate}
+    \item \typ{outer}
+    \item \typ{reduceat}
+  \end{itemize}
+\inctime{5}
+\end{frame}
+
+\begin{frame}
+    {Intro to SciPy}
+  \begin{itemize}
+  \item \url{http://www.scipy.org}
+  \item Open source scientific libraries for Python
+  \item Based on NumPy
+    \end{itemize}
+\end{frame}
+
+\begin{frame}
+  \frametitle{SciPy}
+  \begin{itemize}
+  \item Provides:
+    \begin{itemize}
+    \item Linear algebra
+    \item Numerical integration
+    \item Fourier transforms
+    \item Signal processing
+    \item Special functions
+    \item Statistics
+    \item Optimization
+    \item Image processing
+    \item ODE solvers
+    \end{itemize}
+  \item Uses LAPACK, QUADPACK, ODEPACK, FFTPACK etc. from netlib
+  \end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Linear Algebra}
+  \typ{>>> from scipy import linalg}
+  \begin{itemize}
+    \item \typ{linalg.det, linalg.norm}
+    \item \typ{linalg.eig, linalg.lu}
+    \item \typ{linalg.expm, linalg.logm}
+    \item \typ{linalg.sinm, linalg.sinhm}
+  \end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Linear Algebra \ldots}
+  \begin{align*}
+    3x + 2y - z  & = 1 \\
+    2x - 2y + 4z  & = -2 \\
+    -x + \frac{1}{2}y -z & = 0
+  \end{align*}
+  \begin{lstlisting}
+    >>> linalg.solve(A,B)
+  \end{lstlisting}
+\inctime{15}
+\end{frame}
+
+\begin{frame}[fragile]
+  \begin{itemize}
+    \item Integrating Functions given function object
+    \item Integrating Functions given fixed samples
+    \item Numerical integrators of ODE systems
+  \end{itemize}
+  \frametitle{Integrate}
+  Calculate $\int^1_0sin(x) + x^2$
+  \begin{lstlisting}
+    >>> def f(x):
+            return np.sin(x)+x**2
+    >>> integrate.quad(f, 0, 1)
+  \end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Integrate \ldots}
+  Numerically solve ODEs\\
+  \begin{align*}
+  \frac{dx}{dt}&=-e^{(-t)}x^2(t)\\ 
+           x(0)&=2    
+  \end{align*}
+  \begin{lstlisting}
+    def dx_dt(x,t):
+        return -np.exp(-t)*x**2
+
+    x=integrate.odeint(dx_dt, 2, t)
+    plt.plot(x,t)
+  \end{lstlisting}
+\inctime{10}
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Interpolation}
+  \begin{itemize}
+    \item \typ{interpolate.interp1d, ...}
+    \item \typ{interpolate.splrep, splev}
+  \end{itemize}
+  Cubic Spline of $sin(x)$
+  \begin{lstlisting}
+    x = np.arange(0,2*np.pi,np.pi/8)
+    y = np.sin(x)
+    t = interpolate.splrep(x,y,s=0)
+    X = np.arange(0,2*np.pi,np.pi/50)
+    Y = interpolate.splev(X,t,der=0)
+
+    plt.plot(x,y,'o',x,y,X,Y)
+    plt.show()
+  \end{lstlisting}
+\inctime{10}
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Signal \& Image Processing}
+    \begin{itemize}
+     \item Convolution
+     \item B-splines
+     \item Filtering
+     \item Filter design
+     \item IIR filter design
+     \item Linear Systems
+     \item LTI Reresentations
+     \item Waveforms
+     \item Window functions
+     \item Wavelets
+    \end{itemize}
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Signal \& Image Processing}
+  Applying a simple median filter
+  \begin{lstlisting}
+    from scipy import signal, ndimage
+    from scipy import lena
+    A=lena().astype('float32')
+    B=signal.medfilt2d(A)
+    imshow(B)
+  \end{lstlisting}
+  Zooming an array - uses spline interpolation
+  \begin{lstlisting}
+    b=ndimage.zoom(A,0.5)
+    imshow(b)
+    \inctime{5}
+  \end{lstlisting}
+
+\end{frame}
+
+\begin{frame}[fragile]
+  \frametitle{Problems}
+  The Van der Pol oscillator is a type of nonconservative oscillator with nonlinear damping. It evolves in time according to the second order differential equation:
+  \begin{equation*}
+  \frac{d^2x}{dt^2}+\mu(x^2-1)\frac{dx}{dt}+x= 0
+  \end{equation*}
+\inctime{25}
+\end{frame}
+
+
+\end{document}
+
+- Numpy arrays (30 mins)
+    - Matrices
+    - random number generation.
+    - Image manipulation: jigsaw puzzle.
+    - Monte-carlo integration.
+
+