Minor edits to day1 session4.
--- a/day1/session3.tex Thu Oct 15 22:43:51 2009 +0530
+++ b/day1/session3.tex Thu Oct 15 23:10:03 2009 +0530
@@ -78,7 +78,7 @@
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
-\date[] {31, October 2009}
+\date[] {31, October 2009\\Day 1, Session 3}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
@@ -230,7 +230,7 @@
\end{enumerate}
\end{itemize}
\begin{lstlisting}
-coeffs, res, rank, sing = lstsq(A,Tsq)
+In []: coef, res, r, s = lstsq(A,Tsq)
\end{lstlisting}
\end{frame}
@@ -239,15 +239,15 @@
\begin{itemize}
\item Use the poly1d function of pylab, to create a function for the line equation using the coefficients obtained
\begin{lstlisting}
-p=poly1d(coeffs)
+In []: p=poly1d(coef)
\end{lstlisting}
\item Get new $T^2$ values using the function \typ{p} obtained
\begin{lstlisting}
-Tline = p(L)
+In []: Tline = p(L)
\end{lstlisting}
\item Now plot Tline vs. L, to get the Least squares fit line.
\begin{lstlisting}
-plot(L, Tline)
+In []: plot(L, Tline)
\end{lstlisting}
\end{itemize}
\end{frame}
@@ -417,27 +417,3 @@
\end{document}
-Least squares: Smooth curve fit.
-Array Operations: Mean, average (etc region wise like district wise and state wise from SSLC.txt)
-Subject wise average. Introduce idea of dictionary.
-
-Session 3
-
-import scipy
-from scipy import linalg.
-
-choose some meaningful plot. ??
-Newton's law of cooling.
-u, v, f - optics
-hooke's law
-Least fit curves.
-
-
-Choose a named problem.
-ODE - first order. Whatever.
-
-
-arrays, etc etc.
-sum, average, mean. whatever. statistical
-sslc data
-numpy load text??
--- a/day1/session4.tex Thu Oct 15 22:43:51 2009 +0530
+++ b/day1/session4.tex Thu Oct 15 23:10:03 2009 +0530
@@ -129,7 +129,9 @@
\begin{frame}[fragile]
\frametitle{Matrices: Initializing}
\begin{lstlisting}
- In []: a = matrix([[1,2,3],[4,5,6],[7,8,9]])
+ In []: a = matrix([[1,2,3],
+ [4,5,6],
+ [7,8,9]])
In []: a
Out[]:
@@ -142,6 +144,7 @@
\subsection{Basic Operations}
\begin{frame}[fragile]
\frametitle{Inverse of a Matrix}
+\begin{small}
\begin{lstlisting}
In []: linalg.inv(a)
Out[]:
@@ -149,6 +152,7 @@
[ -6.30442381e+15, 1.26088476e+16, -6.30442381e+15],
[ 3.15221191e+15, -6.30442381e+15, 3.15221191e+15]])
\end{lstlisting}
+\end{small}
\end{frame}
\begin{frame}[fragile]
@@ -164,13 +168,12 @@
\begin{lstlisting}
In []: linalg.norm(a)
Out[]: 16.881943016134134
-
- In []: linalg.norm?
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Eigen Values and Eigen Matrix}
+\begin{small}
\begin{lstlisting}
In []: linalg.eigvals(a)
Out[]: array([ 1.61168440e+01, -1.11684397e+00, -1.22196337e-15])
@@ -182,18 +185,20 @@
[-0.52532209, -0.08675134, -0.81649658],
[-0.8186735 , 0.61232756, 0.40824829]]))
\end{lstlisting}
+\end{small}
\end{frame}
\section{Solving linear equations}
\begin{frame}[fragile]
\frametitle{Solution of equations}
Example problem: Consider the set of equations
+\vspace{-0.1in}
\begin{align*}
3x + 2y - z & = 1 \\
2x - 2y + 4z & = -2 \\
-x + \frac{1}{2}y -z & = 0
\end{align*}
-
+\vspace{-0.08in}
To Solve this,
\begin{lstlisting}
In []: A = array([[3,2,-1],[2,-2,4],[-1, 0.5, -1]])