Minor edits to correct spellings.
--- a/day1/cheatsheet1.tex Tue Dec 08 13:06:14 2009 +0530
+++ b/day1/cheatsheet1.tex Tue Dec 08 16:37:18 2009 +0530
@@ -44,7 +44,7 @@
\subsection{plot}
\typ{In []: plot(X, Y)}\\
-For given arrays of equal length(above case X and Y), \typ{plot} plots the correspoding *x* and *y* pairs taken from X and Y.
+For given arrays of equal length(above case X and Y), \typ{plot} plots the corresponding *x* and *y* pairs taken from X and Y.
\subsection{Colors of plots}
\typ{In []: plot(y, sin(y), 'g')}\\
@@ -78,7 +78,7 @@
\subsection{legends}
\typ{In []: legend('sin(x)',loc=center)} \\
-Placec a legend on the current plot at location *loc*.\\
+Places a legend on the current plot at location *loc*.\\
Apart from \typ{center}, some other \typ{loc} which can be specified are:
\begin{lstlisting}
'best'
--- a/day1/cheatsheet2.tex Tue Dec 08 13:06:14 2009 +0530
+++ b/day1/cheatsheet2.tex Tue Dec 08 16:37:18 2009 +0530
@@ -119,11 +119,11 @@
Out[]: ['hello', 'world']
In []: greet = ``hello, world''
In []: print greet.split(',')
-Out[]: ['hello', ' world'] # Note the whitespace before 'world'
+Out[]: ['hello', ' world'] # Note the white space before 'world'
\end{lstlisting}
A string can be split based on the delimiter specified within quotes. A combination of more than one delimiter can also be used.\\
\typ{In []: greet.split(', ')}\\
-\typ{Out[]: ['hello', 'world']}\\Note the whitespace is not there anymore.
+\typ{Out[]: ['hello', 'world']}\\Note the white space is not there anymore.
\newpage
\section{Plotting from Files}
\subsection{Opening files}
--- a/day1/cheatsheet4.tex Tue Dec 08 13:06:14 2009 +0530
+++ b/day1/cheatsheet4.tex Tue Dec 08 16:37:18 2009 +0530
@@ -28,7 +28,7 @@
Matrix Creation\\
\typ{In []: C = array([[1,1,2], [2,4,1], [-1,3,7]])}\\
It creates C matrix of shape 3x3\\
-Shape is dimenions of given array.
+Shape is dimensions of given array.
\begin{lstlisting}
In []: C.shape
Out[]: (3, 3)
@@ -52,7 +52,7 @@
In []: C[1,2]
Out[]: 1
\end{lstlisting}
-Two indexes seperated by \typ{','} specifies [row, column]. So \typ{C[1,2]} gets third element of second row(indices starts from 0).
+Two indexes separated by \typ{','} specifies [row, column]. So \typ{C[1,2]} gets third element of second row(indices starts from 0).
\newpage
\begin{lstlisting}
In []: C[1]
@@ -77,7 +77,7 @@
\end{lstlisting}
\subsection{Slicing}
-Accessing rows with Matricies is straightforward. But If one wants to access particular Column, or want a sub-matrix, Slicing is the way to go.
+Accessing rows with Matrices is straightforward. But If one wants to access particular Column, or want a sub-matrix, Slicing is the way to go.
\begin{lstlisting}
In []: C[:,1]
Out[]: array([1, 0, 3])
@@ -123,7 +123,7 @@
\typ{':2'} => Start from first column, till and excluding third column.
\newpage
\subsection{Striding}
-Often apart from submatrix, one needs to get some mechanism to jump a step. For example, how can we have all alternate rows of a Matrix. \\
+Often apart from sub-matrix, one needs to get some mechanism to jump a step. For example, how can we have all alternate rows of a Matrix. \\
Following method will return Matrix with alternate rows.
\begin{lstlisting}
In []: C[::2,:]
--- a/day1/cheatsheet5.tex Tue Dec 08 13:06:14 2009 +0530
+++ b/day1/cheatsheet5.tex Tue Dec 08 16:37:18 2009 +0530
@@ -15,7 +15,7 @@
#load data file directly into Arrays.
\end{verbatim}
\section{}
-Interploate
+Interpolate
\begin{verbatim}
In []: from scipy.interpolate import splrep
In []: tck = splrep(x,y) #get spline curve representation for x,y.
--- a/day1/cheatsheet6.tex Tue Dec 08 13:06:14 2009 +0530
+++ b/day1/cheatsheet6.tex Tue Dec 08 16:37:18 2009 +0530
@@ -24,7 +24,7 @@
\large{FOSSEE}
\end{center}
\section{Solving linear equations}
-Condier following sets of equations:\\
+Consider following sets of equations:\\
\begin{align*}
3x + 2y - z & = 1 \\
2x - 2y + 4z & = -2 \\
@@ -82,7 +82,7 @@
In [96]: expression(pi/3)
Out[96]: 0.90689968211710881
\end{lstlisting}
-\subsection{Roots of non-linear eqations}
+\subsection{Roots of non-linear equations}
For Finding the roots of a non linear equation(defined as $f(x)=0$), around a starting estimate we use \typ{fsolve}:\\
\typ{In []: from scipy.optimize import fsolve}\\
\typ{fsolve} is not a part of \typ{pylab}, instead is a function in the \textbf{optimize} module of \textbf{scipy}, and hence we \textbf{import} it.\\