--- a/day2/session1.tex Sat Oct 03 16:18:26 2009 +0530
+++ b/day2/session1.tex Sat Oct 03 19:39:06 2009 +0530
@@ -170,7 +170,6 @@
\item \alert{Note:} \typ{len(arr) != arr.size} in general
\item \alert{Note:} By default array operations are performed
\alert{elementwise}
- \item Indices, slicing: just like lists
\end{itemize}
\end{frame}
@@ -192,8 +191,6 @@
>>> print x[0], x[-1]
10.0 4.0
\end{lstlisting}
-
-\inctime{10}
\end{frame}
\begin{frame}[fragile]
@@ -223,10 +220,9 @@
\typ{less (<)}, \typ{greater (>)} etc.
\item Trig and other functions: \typ{sin(x), arcsin(x), sinh(x),
exp(x), sqrt(x)} etc.
- \item \typ{sum(x, axis=0), product(x, axis=0)}
- \item \typ{dot(a, bp)}
+ \item \typ{sum(x, axis=0), product(x, axis=0), dot(a, bp)} \inctime{10}
\end{itemize}
- \inctime{10}
+
\end{frame}
\subsection{Array Creation \& Slicing, Striding Arrays}
@@ -257,6 +253,8 @@
[8, 9]])
>>> a[:,2]
array([3, 6, 9])
+>>> a[...,2]
+array([3, 6, 9])
\end{lstlisting}
\end{frame}
@@ -293,6 +291,8 @@
\end{lstlisting}
\begin{enumerate}
\item Convert an RGB image to Grayscale. $ Y = 0.5R + 0.25G + 0.25B $
+ \item Scale the image to 50\%
+ \item Introduce some random noise?
\end{enumerate}
\inctime{15}
\end{frame}
@@ -723,7 +723,7 @@
\end{frame}
\begin{frame}
- \frametitle{Problem set 1.0}
+ \frametitle{Problem Set}
\begin{enumerate}
\item Write a function that plots any n-gon given \typ{n}.
\item Consider the logistic map, $f(x) = kx(1-x)$, plot it for
@@ -731,9 +731,12 @@
\end{enumerate}
\end{frame}
-\begin{frame}
- \frametitle{Problem set 1.1}
- \begin{enumerate}
+\begin{frame}[fragile]
+\frametitle{Problem Set}
+ \begin{columns}
+ \column{0.6\textwidth}
+ \small{
+ \begin{enumerate}
\item Consider the iteration $x_{n+1} = f(x_n)$ where $f(x) =
kx(1-x)$. Plot the successive iterates of this process.
\item Plot this using a cobweb plot as follows:
@@ -744,28 +747,12 @@
\item Draw line to $(x_i, x_i)$
\item Repeat from 2 for as long as you want
\end{enumerate}
- \end{enumerate}
+ \end{enumerate}}
+ \column{0.35\textwidth}
+ \hspace*{-0.5in}
+ \includegraphics[height=1.6in, interpolate=true]{data/cobweb}
+\end{columns}
+\inctime{20}
\end{frame}
-\begin{frame}
- \frametitle{Problem set 1.2}
- \begin{enumerate}
-
- \item Plot the Koch snowflake. Write a function to generate the
- necessary points given the two points constituting a line.
- \pause
- \begin{enumerate}
- \item Split the line into 4 segments.
- \item The first and last segments are trivial.
- \item To rotate the point you can use complex numbers,
- recall that $z e^{j \theta}$ rotates a point $z$ in 2D
- by $\theta$.
- \item Do this for all line segments till everything is
- done.
- \end{enumerate}
- \item Show rate of convergence for a first and second order finite
- difference of sin(x)
-\end{enumerate}
-\inctime{30}
-\end{frame}
\end{document}