Initial changes to cheat sheet for session 2.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: Prabhu Ramachandran <prabhu at aero.iitb.ac.in>
% Copyright (c) 2005-2009, Prabhu Ramachandran
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
\usetheme{Warsaw}
\useoutertheme{infolines}
\setbeamercovered{transparent}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily\bfseries,
commentstyle=\color{red}\itshape,
stringstyle=\color{darkgreen},
showstringspaces=false,
keywordstyle=\color{blue}\bfseries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar}
{#1}
\end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
\newcommand{\typ}[1]{\texttt{#1}}
\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
% language=Python,
% basicstyle=\small\ttfamily,
% commentstyle=\ttfamily\color{blue},
% stringstyle=\ttfamily\color{orange},
% showstringspaces=false,
% breaklines=true,
% postbreak = \space\dots
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[Exercises]{Exercises}
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {7 November, 2009\\Day 1, Session 5}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}
%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Problem 1}
\begin{itemize}
\item Open file 'pos.txt', it has X and Y Coordinate of a particle under motion
\item Plot X vs Y Graph.
\item Label both the axes.
\item What kind of motion is this?
\item Title the graph accordingly.
\item Annotate the position where vertical velocity is zero.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Problem 2}
Write a Program that plots a regular n-gon(Let n = 5).
\end{frame}
\begin{frame}[fragile]
\frametitle{Problem 3}
Create a sequence of images in which the damped oscillator($e^{x/10}sin(x)$) slowly evolves over time.
\begin{columns}
\column{0.35\textwidth}
\includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot2}
\column{0.35\textwidth}
\includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot4}
\column{0.35\textwidth}
\includegraphics[width=1.5in,height=1.5in, interpolate=true]{data/plot6}
\end{columns}
\begin{block}{Hint}
\small
\begin{lstlisting}
savefig('plot'+str(i)+'.png') #i is int variable
\end{lstlisting}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Problem 4}
Legendre polynomials $P_n(x)$ are defined by the following recurrence relation
\center{$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0$}\\
with $P_0(x) = 1$, $P_1(x) = x$ and $P_2(x) = (3x^2 - 1)/2$. Compute the next three
Legendre polynomials and plot all 6 over the interval [-1,1].
\end{frame}
\end{document}
%% \begin{frame}[fragile]
%% \frametitle{Problem Set 5}
%% \begin{columns}
%% \column{0.6\textwidth}
%% \small{
%% \begin{itemize}
%% \item[3] Consider the iteration $x_{n+1} = f(x_n)$ where $f(x) = kx(1-x)$. Plot the successive iterates of this process as explained below.
%% \end{itemize}}
%% \column{0.35\textwidth}
%% \hspace*{-0.5in}
%% \includegraphics[height=1.6in, interpolate=true]{data/cobweb}
%% \end{columns}
%% \end{frame}
%% \begin{frame}
%% \frametitle{Problem Set 5.3}
%% Plot the cobweb plot as follows:
%% \begin{enumerate}
%% \item Start at $(x_0, 0)$ ($\implies$ i=0)
%% \item Draw a line to $(x_i, f(x_i))$
%% \item Set $x_{i+1} = f(x_i)$
%% \item Draw a line to $(x_{i+1}, x_{i+1})$
%% \item $(i\implies i+1)$
%% \item Repeat from 2 for as long as you want
%% \end{enumerate}
%% \inctime{20}
%% \end{frame}