Branches merged.
\documentclass[12pt]{article}
\title{Matrices and Least Square Fit}
\author{FOSSEE}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily,
commentstyle=\itshape\bfseries,
showstringspaces=false,
}
\newcommand{\typ}[1]{\lstinline{#1}}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\begin{document}
\date{}
\vspace{-1in}
\begin{center}
\LARGE{Matrices and Least Square Fit}\\
\large{FOSSEE}
\end{center}
\section{Matrices}
Inputting a Matrix
\begin{lstlisting}
In []: C = array([[1,1,2],
[2,4,1],
[-1,3,7]])
In []: B = ones_like(C)
In []: A = ones((3,2))
In []: I = identity(3)
\end{lstlisting}
Accessing Elements
\begin{lstlisting}
In []: C[1,2]
Out[]: 1
In []: C[1]
Out[]: array([2, 4, 1])
\end{lstlisting}
Changing elements
\begin{lstlisting}
In []: C[1,1] = -2
In []: C
Out[]:
array([[ 1, 1, 2],
[ 2, -2, 1],
[-1, 3, 7]])
In []: C[1] = [0,0,0]
In []: C
Out[]:
array([[ 1, 1, 2],
[ 0, 0, 0],
[-1, 3, 7]])
\end{lstlisting}
Slicing
\begin{lstlisting}
In []: C[:,1]
Out[]: array([1, 0, 3])
In []: C[1,:]
Out[]: array([0, 0, 0])
In []: C[0:2,:]
Out[]:
array([[1, 1, 2],
[0, 0, 0]])
In []: C[1:3,:]
Out[]:
array([[ 0, 0, 0],
[-1, 3, 7]])
In []: C[:2,:]
Out[]:
array([[1, 1, 2],
[0, 0, 0]])
In []: C[1:,:]
Out[]:
array([[ 0, 0, 0],
[-1, 3, 7]])
In []: C[1:,:2]
Out[]:
array([[ 0, 0],
[-1, 3]])
\end{lstlisting}
Striding
\begin{lstlisting}
In []: C[::2,:]
Out[]:
array([[ 1, 1, 2],
[-1, 3, 7]])
In []: C[:,::2]
Out[]:
xarray([[ 1, 2],
[ 0, 0],
[-1, 7]])
In []: C[::2,::2]
Out[]:
array([[ 1, 2],
[-1, 7]])
\end{lstlisting}
Matrix Operations
\begin{lstlisting}
In []: A.T # Transpose
In []: sum(A) # Sum of all elements
In []: A+B # Addition
In []: A*B # Product
In []: inv(A) # Inverse
In []: det(A) # Determinant
\end{lstlisting}
Eigen Values and Eigen Vectors
\begin{lstlisting}
In []: eig(A) #Eigen Values and Vectors
In []: eigvals(A) #Eigen Values
\end{lstlisting}
%% Norm
%% \begin{lstlisting}
%% In []: norm(A)
%% \end{lstlisting}
%% Single Value Decomposition
%% \begin{lstlisting}
%% In []: svd(A)
%% \end{lstlisting}
Least Square Fit Line
\begin{lstlisting}
In []: A = array([L, ones_like(L)])
In []: A = A.T
In []: result = lstsq(A,TSq)
In []: coef = result[0]
In []: Tline = coef[0]*L + coef[1]
In []: plot(L, Tline)
\end{lstlisting}
\end{document}