day1/session6.tex
changeset 387 5e485a5d8ac4
parent 385 c70118cdde66
child 389 aa392117454f
--- a/day1/session6.tex	Tue Apr 27 12:14:30 2010 +0530
+++ b/day1/session6.tex	Tue Apr 27 15:20:28 2010 +0530
@@ -273,8 +273,8 @@
 \frametitle{Functions - Definition}
 We have been using them all along. Now let's see how to define them.
 \begin{lstlisting}
-In []: def f(z):
-           return sin(z)+cos(z)*cos(z)
+In []: def g(z):
+ ....:     return sin(z)+cos(z)*cos(z)
 \end{lstlisting}
 \begin{itemize}
 \item \typ{def}
@@ -287,15 +287,15 @@
 \begin{frame}[fragile]
 \frametitle{Functions - Calling them}
 \begin{lstlisting}
-In []: f()
+In []: g()
 ---------------------------------------
 \end{lstlisting}
-\alert{\typ{TypeError:}}\typ{f() takes exactly 1 argument}
+\alert{\typ{TypeError:}}\typ{g() takes exactly 1 argument}
 \typ{(0 given)}
 \begin{lstlisting}
-In []: f(0)
+In []: g(0)
 Out[]: 1.0
-In []: f(1)
+In []: g(1)
 Out[]: 1.1333975665343254
 \end{lstlisting}
 More on Functions later \ldots
@@ -305,7 +305,7 @@
 \frametitle{\typ{fsolve} \ldots}
 Find the root of $sin(z)+cos^2(z)$ nearest to $0$
 \begin{lstlisting}
-In []: fsolve(f, 0)
+In []: fsolve(g, 0)
 Out[]: -0.66623943249251527
 \end{lstlisting}
 \begin{center}
@@ -315,16 +315,16 @@
 
 \begin{frame}[fragile]
   \frametitle{Exercise Problem}
-  Find the root of the equation $x^2 - sin(x) + cos^2(x) == tan(x)$ nearest to $0$
+  Find the root of the equation $x^2 - sin(x) + cos^2(x) = tan(x)$ nearest to $0$
 \end{frame}
 
 \begin{frame}[fragile]
   \frametitle{Solution}
   \begin{small}
   \begin{lstlisting}
-def f(x):
+def g(x):
     return x**2 - sin(x) + cos(x)*cos(x) - tan(x)
-fsolve(f, 0)
+fsolve(g, 0)
   \end{lstlisting}
   \end{small}
   \begin{center}
@@ -353,14 +353,14 @@
 \item Let's consider the spread of an epidemic in a population
 \item $\frac{dy}{dt} = ky(L-y)$ gives the spread of the disease
 \item L is the total population.
-\item Use L = 25000, k = 0.00003, y(0) = 250
+\item Use L = 250000, k = 0.00003, y(0) = 250
 \item Define a function as below
 \end{itemize}
 \begin{lstlisting}
 In []: from scipy.integrate import odeint
 In []: def epid(y, t):
   ....     k = 0.00003
-  ....     L = 25000
+  ....     L = 250000
   ....     return k*y*(L-y)
   ....
 \end{lstlisting}
@@ -414,8 +414,8 @@
   ....     omega = initial[1]
   ....     g = 9.81
   ....     L = 0.2
-  ....     f=[omega, -(g/L)*sin(theta)]
-  ....     return f
+  ....     F=[omega, -(g/L)*sin(theta)]
+  ....     return F
   ....
 \end{lstlisting}
 \end{frame}