--- a/day2/session2.tex Thu Oct 08 19:10:53 2009 +0530
+++ b/day2/session2.tex Thu Oct 08 20:22:15 2009 +0530
@@ -324,7 +324,7 @@
\item Integrating Functions given fixed samples
\item Numerical integrators of ODE systems
\end{itemize}
- Calculate $\int^1_0(sin(x) + x^2)dx$
+ Calculate the area under $(sin(x) + x^2)$ in the range $(0,1)$
\begin{lstlisting}
>>> def f(x):
return np.sin(x)+x**2
@@ -340,11 +340,11 @@
x(0)&=2
\end{align*}
\begin{lstlisting}
- def dx_dt(x,t):
+>>> def dx_dt(x,t):
return -np.exp(-t)*x**2
- x=integrate.odeint(dx_dt, 2, t)
- plt.plot(x,t)
+>>> x=integrate.odeint(dx_dt, 2, t)
+>>> plt.plot(x,t)
\end{lstlisting}
\inctime{10}
\end{frame}
@@ -369,15 +369,15 @@
\begin{frame}[fragile]
\frametitle{Interpolation - Splines}
- Cubic Spline of $sin(x)$
+ Plot the Cubic Spline of $sin(x)$
\begin{lstlisting}
- x = np.arange(0,2*np.pi,np.pi/4)
- y = np.sin(x)
- tck = interpolate.splrep(x,y)
- X = np.arange(0,2*np.pi,np.pi/50)
- Y = interpolate.splev(X,tck,der=0)
- plt.plot(x,y,'o',x,y,X,Y)
- plt.show()
+>>> x = np.arange(0,2*np.pi,np.pi/4)
+>>> y = np.sin(x)
+>>> tck = interpolate.splrep(x,y)
+>>> X = np.arange(0,2*np.pi,np.pi/50)
+>>> Y = interpolate.splev(X,tck,der=0)
+>>> plt.plot(x,y,'o',x,y,X,Y)
+>>> plt.show()
\end{lstlisting}
\inctime{10}
\end{frame}
@@ -403,16 +403,16 @@
\frametitle{Signal \& Image Processing}
Applying a simple median filter
\begin{lstlisting}
- from scipy import signal, ndimage
- from scipy import lena
- A=lena().astype('float32')
- B=signal.medfilt2d(A)
- imshow(B)
+>>> from scipy import signal, ndimage
+>>> from scipy import lena
+>>> A=lena().astype('float32')
+>>> B=signal.medfilt2d(A)
+>>> imshow(B)
\end{lstlisting}
Zooming an array - uses spline interpolation
\begin{lstlisting}
- b=ndimage.zoom(A,0.5)
- imshow(b)
+>>> b=ndimage.zoom(A,0.5)
+>>> imshow(b)
\end{lstlisting}
\inctime{5}
\end{frame}