525 In []: T = array(T) |
525 In []: T = array(T) |
526 In []: TSq = T*T |
526 In []: TSq = T*T |
527 \end{lstlisting} |
527 \end{lstlisting} |
528 \end{frame} |
528 \end{frame} |
529 |
529 |
530 \begin{frame}[fragile] |
|
531 \frametitle{Least Squares Fit} |
|
532 \vspace{-0.15in} |
|
533 \begin{figure} |
|
534 \includegraphics[width=4in]{data/L-Tsq-Line.png} |
|
535 \end{figure} |
|
536 \end{frame} |
|
537 |
|
538 \begin{frame}[fragile] |
|
539 \frametitle{Least Squares Fit} |
|
540 \vspace{-0.15in} |
|
541 \begin{figure} |
|
542 \includegraphics[width=4in]{data/L-Tsq-points.png} |
|
543 \end{figure} |
|
544 \end{frame} |
|
545 |
|
546 \begin{frame}[fragile] |
|
547 \frametitle{Least Squares Fit} |
|
548 \vspace{-0.15in} |
|
549 \begin{figure} |
|
550 \includegraphics[width=4in]{data/least-sq-fit.png} |
|
551 \end{figure} |
|
552 \end{frame} |
|
553 |
|
554 \begin{frame} |
|
555 \frametitle{Least Square Fit Curve} |
|
556 \begin{itemize} |
|
557 \item $T^2$ and $L$ have a linear relationship |
|
558 \item Hence, Least Square Fit Curve is a line |
|
559 \item we shall use the \typ{lstsq} function |
|
560 \end{itemize} |
|
561 \end{frame} |
|
562 |
|
563 \begin{frame}[fragile] |
|
564 \frametitle{\typ{lstsq}} |
|
565 \begin{itemize} |
|
566 \item We need to fit a line through points for the equation $T^2 = m \cdot L+c$ |
|
567 \item The equation can be re-written as $T^2 = A \cdot p$ |
|
568 \item where A is |
|
569 $\begin{bmatrix} |
|
570 L_1 & 1 \\ |
|
571 L_2 & 1 \\ |
|
572 \vdots & \vdots\\ |
|
573 L_N & 1 \\ |
|
574 \end{bmatrix}$ |
|
575 and p is |
|
576 $\begin{bmatrix} |
|
577 m\\ |
|
578 c\\ |
|
579 \end{bmatrix}$ |
|
580 \item We need to find $p$ to plot the line |
|
581 \end{itemize} |
|
582 \end{frame} |
|
583 |
|
584 %%making vander without vander, simple matrix |
|
585 \subsection{Van der Monde matrix generation} |
|
586 \begin{frame}[fragile] |
|
587 \frametitle{Van der Monde Matrix} |
|
588 \begin{itemize} |
|
589 \item A is also called a Van der Monde matrix |
|
590 \item It can be generated using \typ{vander} |
|
591 \end{itemize} |
|
592 \begin{lstlisting} |
|
593 In []: A = vander(L, 2) |
|
594 \end{lstlisting} |
|
595 Gives the required Van der Monde matrix |
|
596 \begin{equation*} |
|
597 \begin{bmatrix} |
|
598 l_1 & 1 \\ |
|
599 l_2 & 1 \\ |
|
600 \vdots & \vdots\\ |
|
601 l_N & 1 \\ |
|
602 \end{bmatrix} |
|
603 \end{equation*} |
|
604 |
|
605 \end{frame} |
|
606 |
|
607 \begin{frame}[fragile] |
|
608 \frametitle{\typ{lstsq} \ldots} |
|
609 \begin{itemize} |
|
610 \item Now use the \typ{lstsq} function |
|
611 \item Along with a lot of things, it returns the least squares solution |
|
612 \end{itemize} |
|
613 \begin{lstlisting} |
|
614 In []: coef, res, r, s = lstsq(A,TSq) |
|
615 \end{lstlisting} |
|
616 \end{frame} |
|
617 |
|
618 \subsection{Plotting} |
|
619 \begin{frame}[fragile] |
|
620 \frametitle{Least Square Fit Line \ldots} |
|
621 We get the points of the line from \typ{coef} |
|
622 \begin{lstlisting} |
|
623 In []: Tline = coef[0]*L + coef[1] |
|
624 \end{lstlisting} |
|
625 \begin{itemize} |
|
626 \item Now plot Tline vs. L, to get the Least squares fit line. |
|
627 \end{itemize} |
|
628 \begin{lstlisting} |
|
629 In []: plot(L, Tline) |
|
630 \end{lstlisting} |
|
631 \end{frame} |
|
632 |
|
633 \begin{frame}[fragile] |
|
634 \frametitle{What did we learn?} |
|
635 \begin{itemize} |
|
636 \item Least square fit |
|
637 \item Van der Monde matrix generation |
|
638 \item Plotting the least square fit curve |
|
639 \end{itemize} |
|
640 \end{frame} |
|
641 |
|
642 \end{document} |
530 \end{document} |