138 \frametitle{Statistical Analysis and Parsing} |
138 \frametitle{Statistical Analysis and Parsing} |
139 Read the data supplied in \emph{sslc1.txt} and obtain the following statistics: |
139 Read the data supplied in \emph{sslc1.txt} and obtain the following statistics: |
140 \begin{itemize} |
140 \begin{itemize} |
141 \item Draw a pie chart representing the number of students who scored more than 90\% in Science per region. |
141 \item Draw a pie chart representing the number of students who scored more than 90\% in Science per region. |
142 \item Draw a pie chart representing the number of students who scored more than 90\% per subject(All regions combined). |
142 \item Draw a pie chart representing the number of students who scored more than 90\% per subject(All regions combined). |
|
143 \item Print mean, median, mode and standard deviation of math scores for all regions combined. |
143 \end{itemize} |
144 \end{itemize} |
144 \end{frame} |
145 \end{frame} |
145 |
146 |
146 \begin{frame} |
147 \begin{frame} |
147 \frametitle{Statistical Analysis and Parsing \ldots} |
148 \frametitle{Statistical Analysis and Parsing \ldots} |
148 Machinery Required - |
149 Machinery Required - |
149 \begin{itemize} |
150 \begin{itemize} |
150 \item File reading and parsing |
151 \item File reading |
|
152 \item Parsing |
151 \item Dictionaries |
153 \item Dictionaries |
|
154 \item NumPy arrays |
|
155 \item Statistical operations |
152 \end{itemize} |
156 \end{itemize} |
153 \end{frame} |
157 \end{frame} |
154 |
158 |
155 \begin{frame} |
159 \begin{frame} |
156 \frametitle{File reading and parsing} |
160 \frametitle{File reading and parsing} |
157 Understanding the structure of sslc1.txt |
161 Understanding the structure of sslc1.txt |
158 \begin{itemize} |
162 \begin{itemize} |
159 \item Each line in the file, i.e each row of a file is a single record. |
163 \item Each line in the file corresponds to one student's details |
160 \item Each record corresponds to a record of a single student |
164 \item aka record |
161 \item Each record consists of several fields separated by a ';' |
165 \item Each record consists of several fields separated by a ';' |
162 \end{itemize} |
166 \end{itemize} |
163 \end{frame} |
167 \end{frame} |
164 |
168 |
165 \begin{frame} |
169 \begin{frame} |
184 fields = record.split(';') |
187 fields = record.split(';') |
185 \end{lstlisting} |
188 \end{lstlisting} |
186 \end{frame} |
189 \end{frame} |
187 |
190 |
188 \begin{frame}[fragile] |
191 \begin{frame}[fragile] |
|
192 \frametitle{Dictionary: Introduction} |
|
193 \begin{itemize} |
|
194 \item lists index: 0 \ldots n |
|
195 \item dictionaries index using strings |
|
196 \end{itemize} |
|
197 \begin{block}{Example} |
|
198 d = \{ ``Hitchhiker's guide'' : 42, |
|
199 ``Terminator'' : ``I'll be back''\}\\ |
|
200 d[``Terminator''] => ``I'll be back'' |
|
201 \end{block} |
|
202 \end{frame} |
|
203 |
|
204 \begin{frame}[fragile] |
|
205 \frametitle{Dictionary: Introduction} |
|
206 \begin{lstlisting} |
|
207 In [1]: d = {"Hitchhiker's guide" : 42, |
|
208 "Terminator" : "I'll be back"} |
|
209 |
|
210 In [2]: d["Hitchhiker's guide"] |
|
211 Out[2]: 42 |
|
212 |
|
213 In [3]: "Hitchhiker's guide" in d |
|
214 Out[3]: True |
|
215 |
|
216 In [4]: "Guido" in d |
|
217 Out[4]: False |
|
218 \end{lstlisting} |
|
219 \end{frame} |
|
220 |
|
221 \begin{frame}[fragile] |
|
222 \frametitle{Dictionary: Introduction} |
|
223 \begin{lstlisting} |
|
224 In [5]: d.keys() |
|
225 Out[5]: ['Terminator', "Hitchhiker's |
|
226 guide"] |
|
227 |
|
228 In [6]: d.values() |
|
229 Out[6]: ["I'll be back", 42] |
|
230 \end{lstlisting} |
|
231 \end{frame} |
|
232 |
|
233 \begin{frame}[fragile] |
|
234 \frametitle{enumerate: Iterating through list indices} |
|
235 \begin{lstlisting} |
|
236 In [1]: names = ["Guido","Alex", "Tim"] |
|
237 |
|
238 In [2]: for i, name in enumerate(names): |
|
239 ...: print i, name |
|
240 ...: |
|
241 0 Guido |
|
242 1 Alex |
|
243 2 Tim |
|
244 \end{lstlisting} |
|
245 \end{frame} |
|
246 |
|
247 \begin{frame}[fragile] |
|
248 \frametitle{Dictionary: Building parsed data} |
|
249 Let our dictionary be: |
|
250 \begin{lstlisting} |
|
251 science = {} # is an empty dictionary |
|
252 \end{lstlisting} |
|
253 \end{frame} |
|
254 |
|
255 \begin{frame}[fragile] |
189 \frametitle{Dictionary - Building parsed data} |
256 \frametitle{Dictionary - Building parsed data} |
190 \begin{itemize} |
257 \begin{itemize} |
191 \item Let the parsed data be stored in list of dictionaries. |
258 \item \emph{Keys} of \emph{science} will be region codes |
192 \item d = \{\} is an empty dictionary |
259 \item Value of a \emph{science} will be the number students who scored more than 90\% in that region |
193 \end{itemize} |
260 \end{itemize} |
194 \end{frame} |
|
195 |
|
196 \begin{frame}[fragile] |
|
197 \frametitle{Dictionary - Building parsed data} |
|
198 \begin{lstlisting} |
|
199 ninety_percents = [{}, {}, {}, {}, {}] |
|
200 \end{lstlisting} |
|
201 \end{frame} |
|
202 |
|
203 \begin{frame}[fragile] |
|
204 \frametitle{Dictionary - Building parsed data} |
|
205 \begin{itemize} |
|
206 \item Index of a dictionary is called a \emph{key} |
|
207 \item \emph{Keys} of these dictionaries are strings - region codes |
|
208 \end{itemize} |
|
209 \end{frame} |
|
210 |
|
211 \begin{frame}[fragile] |
|
212 \frametitle{Dictionary - Building parsed data \ldots} |
|
213 \begin{itemize} |
|
214 \item Value of a \emph{key} can be any legal Python value |
|
215 \item In this problem let the value of a \emph{key} be another an integer |
|
216 \item This dictionary contains: |
|
217 \end{itemize} |
|
218 'region code': Number of students who scored more than 90\% in this region for this subject |
|
219 \end{frame} |
261 \end{frame} |
220 |
262 |
221 \begin{frame}[fragile] |
263 \begin{frame}[fragile] |
222 \frametitle{Building parsed data \ldots} |
264 \frametitle{Building parsed data \ldots} |
223 \begin{lstlisting} |
265 \begin{lstlisting} |
224 from pylab import * |
266 from pylab import pie |
225 |
267 |
226 ninety_percents = [{}, {}, {}, {}, {}] |
268 science = {} |
227 |
269 |
228 for record in open('sslc1.txt'): |
270 for record in open('sslc1.txt'): |
229 record = record.strip() |
271 record = record.strip() |
230 fields = record.split(';') |
272 fields = record.split(';') |
231 |
273 |
233 \end{lstlisting} |
275 \end{lstlisting} |
234 \end{frame} |
276 \end{frame} |
235 |
277 |
236 \begin{frame}[fragile] |
278 \begin{frame}[fragile] |
237 \frametitle{Building parsed data \ldots} |
279 \frametitle{Building parsed data \ldots} |
238 \small |
280 \begin{lstlisting} |
239 \begin{lstlisting} |
281 if region_code not in science: |
240 for i, field in enumerate(fields[3:8]): |
282 science[region_code] = 0 |
241 |
283 |
242 if region_code not in ninety_percents[i]: |
284 score_str = fields[4].strip() |
243 ninety_percents[i][region_code] = 0 |
285 |
244 |
286 score = int(score_str) if |
245 score_str = field.strip() |
287 score_str != 'AA' else 0 |
246 |
288 |
247 score = 0 if score_str == 'AA' else |
289 if score > 90: |
248 int(score_str) |
290 science[region_code] += 1 |
249 if score > 90: |
|
250 ninety_percents[i][region_code] += 1 |
|
251 \end{lstlisting} |
|
252 \end{frame} |
|
253 |
|
254 \begin{frame}[fragile] |
|
255 \frametitle{Consolidating data} |
|
256 \begin{lstlisting} |
|
257 subj_total = [] |
|
258 for subject in ninety_percents: |
|
259 subj_total.append(sum( |
|
260 subject.values())) |
|
261 \end{lstlisting} |
291 \end{lstlisting} |
262 \end{frame} |
292 \end{frame} |
263 |
293 |
264 \begin{frame}[fragile] |
294 \begin{frame}[fragile] |
265 \frametitle{Pie charts} |
295 \frametitle{Pie charts} |
266 \small |
296 \small |
267 \begin{lstlisting} |
297 \begin{lstlisting} |
268 figure(1) |
298 figure(1) |
269 pie(ninety_percents[4].values(), |
299 pie(science.values(), |
270 labels=ninety_percents[1].keys()) |
300 labels=science.keys()) |
271 title('Students scoring 90% and above |
301 title('Students scoring 90% and above |
272 in science by region') |
302 in science by region') |
273 savefig('/tmp/science.png') |
303 savefig('/tmp/science.png') |
274 \end{lstlisting} |
304 \end{lstlisting} |
275 \begin{columns} |
305 \begin{columns} |
276 \column{5.25\textwidth} |
306 \column{5.25\textwidth} |
277 \hspace*{1.1in} |
307 \hspace*{1.1in} |
278 \includegraphics[height=2in, interpolate=true]{data/science} |
308 \includegraphics[height=2in, interpolate=true]{data/science} |
279 \column{0.8\textwidth} |
309 \column{0.8\textwidth} |
280 \end{columns} |
310 \end{columns} |
|
311 \end{frame} |
|
312 |
|
313 \begin{frame}[fragile] |
|
314 \frametitle{Building data for all subjects \ldots} |
|
315 \begin{lstlisting} |
|
316 from pylab import pie |
|
317 from scipy import mean, median, std |
|
318 from scipy import stats |
|
319 |
|
320 scores = [[]] * 5 |
|
321 ninety_percents = [{}] * 5 |
|
322 \end{lstlisting} |
|
323 \end{frame} |
|
324 |
|
325 \begin{frame}[fragile] |
|
326 \frametitle{Building data for all subjects \ldots} |
|
327 \begin{lstlisting} |
|
328 from pylab import pie |
|
329 from scipy import mean, median, std |
|
330 from scipy import stats |
|
331 \end{lstlisting} |
|
332 |
|
333 \begin{block}{Repeating list items} |
|
334 \begin{lstlisting} |
|
335 scores = [[]] * 5 |
|
336 ninety_percents = [{}] * 5 |
|
337 \end{lstlisting} |
|
338 \end{block} |
|
339 \end{frame} |
|
340 |
|
341 \begin{frame}[fragile] |
|
342 \frametitle{Building data for all subjects \ldots} |
|
343 \begin{lstlisting} |
|
344 for record in open('sslc1.txt'): |
|
345 record = record.strip() |
|
346 fields = record.split(';') |
|
347 |
|
348 region_code = fields[0].strip() |
|
349 \end{lstlisting} |
|
350 \end{frame} |
|
351 |
|
352 \begin{frame}[fragile] |
|
353 \frametitle{Building data for all subjects \ldots} |
|
354 \small |
|
355 \begin{lstlisting} |
|
356 for i, field in enumerate(fields[3:8]): |
|
357 if region_code not in ninety_percents[i]: |
|
358 ninety_percents[i][region_code] = 0 |
|
359 |
|
360 score_str = field.strip() |
|
361 score = int(score_str) if |
|
362 score_str != 'AA' else 0 |
|
363 |
|
364 scores[i].append(score) |
|
365 |
|
366 if score > 90: |
|
367 ninety_percents[i][region_code] += 1 |
|
368 \end{lstlisting} |
|
369 \end{frame} |
|
370 |
|
371 \begin{frame}[fragile] |
|
372 \frametitle{Consolidating data} |
|
373 \begin{lstlisting} |
|
374 subj_total = [] |
|
375 for subject in ninety_percents: |
|
376 subj_total.append(sum( |
|
377 subject.values())) |
|
378 \end{lstlisting} |
281 \end{frame} |
379 \end{frame} |
282 |
380 |
283 \begin{frame}[fragile] |
381 \begin{frame}[fragile] |
284 \frametitle{Pie charts} |
382 \frametitle{Pie charts} |
285 \begin{lstlisting} |
383 \begin{lstlisting} |
295 \end{frame} |
393 \end{frame} |
296 |
394 |
297 \begin{frame}[fragile] |
395 \begin{frame}[fragile] |
298 \frametitle{Pie charts} |
396 \frametitle{Pie charts} |
299 \includegraphics[height=3in, interpolate=true]{data/all_regions} |
397 \includegraphics[height=3in, interpolate=true]{data/all_regions} |
|
398 \end{frame} |
|
399 |
|
400 \begin{frame}[fragile] |
|
401 \frametitle{Obtaining statistics} |
|
402 \begin{lstlisting} |
|
403 math_scores = array(scores[2]) |
|
404 |
|
405 print "Mean: ", mean(math_scores) |
|
406 |
|
407 print "Median: ", median(math_scores) |
|
408 |
|
409 print "Mode: ", stats.mode(math_scores) |
|
410 |
|
411 print "Standard Deviation: ", |
|
412 std(math_scores) |
|
413 \end{lstlisting} |
|
414 \end{frame} |
|
415 |
|
416 \begin{frame}[fragile] |
|
417 \frametitle{What tools did we use?} |
|
418 \begin{itemize} |
|
419 \item Dictionaries for storing data |
|
420 \item Facilities for drawing pie charts |
|
421 \item NumPy arrays for efficient array manipulations |
|
422 \item Functions for statistical computations - mean, median, mode, standard deviation |
|
423 \end{itemize} |
300 \end{frame} |
424 \end{frame} |
301 |
425 |
302 \begin{frame} |
426 \begin{frame} |
303 \frametitle{L vs $T^2$ \ldots} |
427 \frametitle{L vs $T^2$ \ldots} |
304 Let's go back to the L vs $T^2$ plot |
428 Let's go back to the L vs $T^2$ plot |