made changes to script, matrices, using array() instead of matrix() now.
--- a/matrices/script.rst Sun Nov 07 15:43:46 2010 +0530
+++ b/matrices/script.rst Sun Nov 07 16:20:02 2010 +0530
@@ -51,7 +51,7 @@
on arrays are valid on matrices also. A matrix may be created as,
::
- m1 = matrix([1,2,3,4])
+ m1 = array([1,2,3,4])
.. #[Puneeth: don't use ``matrix``. Use ``array``. The whole script will
@@ -70,10 +70,16 @@
::
l1 = [[1,2,3,4],[5,6,7,8]]
- m2 = matrix(l1)
+ m2 = array(l1)
+
+{{{ switch to next slide, exercise 1}}}
-Note that all matrix operations are done using arrays, so a matrix may
-also be created as
+Pause here and create a two dimensional matrix m3 of order 2 by 4 with
+elements 5, 6, 7, 8, 9, 10, 11, 12.
+
+{{{ switch to next slide, solution }}}
+
+m3 can be created as,
::
m3 = array([[5,6,7,8],[9,10,11,12]])
@@ -100,17 +106,16 @@
m3 * m2
-Note that in arrays ``array(A) star array(B)`` does element wise
-multiplication and not matrix multiplication, but unlike arrays, the
-operation ``matrix(A) star matrix(B)`` does matrix multiplication and
-not element wise multiplication. And in this case since the sizes are
-not compatible for multiplication it returned an error.
+Note that in arrays ``m3 * m2`` does element wise multiplication and not
+matrix multiplication,
-And element wise multiplication in matrices are done using the
-function ``multiply()``
+And matrix multiplication in matrices are done using the function ``dot()``
::
- multiply(m3,m2)
+ dot(m3, m2)
+
+but due to size mismatch the multiplication could not be done and it
+returned an error,
{{{ switch to next slide, Matrix multiplication (cont'd) }}}
@@ -126,11 +131,10 @@
the order four by two,
::
- m4 = matrix([[1,2],[3,4],[5,6],[7,8]])
- m1 * m4
+ m4 = array([[1,2],[3,4],[5,6],[7,8]])
+ dot(m1, m4)
-thus unlike in array object ``star`` can be used for matrix multiplication
-in matrix object.
+thus the function ``dot()`` can be used for matrix multiplication.
{{{ switch to next slide, recall from arrays }}}
@@ -158,7 +162,7 @@
matrix, the matrix being,
::
- m5 = matrix(arange(1,17).reshape(4,4))
+ m5 = arange(1,17).reshape(4,4)
print m5
The inverse of a matrix A, A raise to minus one is also called the
@@ -177,7 +181,7 @@
::
sum = 0
- for each in array(im5.flatten())[0]:
+ for each in im5.flatten():
sum += each * each
print sqrt(sum)
--- a/matrices/slides.org Sun Nov 07 15:43:46 2010 +0530
+++ b/matrices/slides.org Sun Nov 07 16:20:02 2010 +0530
@@ -42,11 +42,16 @@
* Creating a matrix
- Creating a matrix using direct data
- : In []: m1 = matrix([1, 2, 3, 4])
+ : In []: m1 = array([1, 2, 3, 4])
- Creating a matrix using lists
: In []: l1 = [[1,2,3,4],[5,6,7,8]]
- : In []: m2 = matrix(l1)
- - A matrix is basically an array
+ : In []: m2 = array(l1)
+* Exercise 1
+ Create a (2, 4) matrix ~m3~
+ : m3 = [[5, 6, 7, 8],
+ : [9, 10, 11, 12]]
+* Solution 1
+ - m3 can be created as,
: In []: m3 = array([[5,6,7,8],[9,10,11,12]])
* Matrix operations
@@ -55,20 +60,20 @@
- Element-wise subtraction (both matrix should be of order ~mXn~)
: In []: m3 - m2
* Matrix Multiplication
- - Matrix Multiplication
+ - Element-wise multiplication using ~m3 * m2~
: In []: m3 * m2
+ - Matrix Multiplication using ~dot(m3, m2)~
+ : In []: dot(m3, m2)
: Out []: ValueError: objects are not aligned
- - Element-wise multiplication using ~multiply()~
- : multiply(m3, m2)
* Matrix Multiplication (cont'd)
- Create two compatible matrices of order ~nXm~ and ~mXr~
: In []: m1.shape
- matrix m1 is of order ~1 X 4~
- Creating another matrix of order ~4 X 2~
- : In []: m4 = matrix([[1,2],[3,4],[5,6],[7,8]])
+ : In []: m4 = array([[1,2],[3,4],[5,6],[7,8]])
- Matrix multiplication
- : In []: m1 * m4
+ : In []: dot(m1, m4)
* Recall from ~array~
- The functions
- ~identity(n)~ -
@@ -86,11 +91,11 @@
* More matrix operations
Transpose of a matrix
: In []: m4.T
-* Exercise 1 : Frobenius norm \& inverse
+* Exercise 2 : Frobenius norm \& inverse
Find out the Frobenius norm of inverse of a ~4 X 4~ matrix.
:
The matrix is
- : m5 = matrix(arange(1,17).reshape(4,4))
+ : m5 = arange(1,17).reshape(4,4)
- Inverse of A,
-
#+begin_latex
@@ -102,7 +107,7 @@
$||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}$
#+end_latex
-* Exercise 2: Infinity norm
+* Exercise 3 : Infinity norm
Find the infinity norm of the matrix ~im5~
:
- Infinity norm is defined as,
--- a/matrices/slides.tex Sun Nov 07 15:43:46 2010 +0530
+++ b/matrices/slides.tex Sun Nov 07 16:20:02 2010 +0530
@@ -1,4 +1,4 @@
-% Created 2010-10-12 Tue 14:28
+% Created 2010-11-07 Sun 16:18
\documentclass[presentation]{beamer}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
@@ -70,7 +70,7 @@
\end{itemize}
\begin{verbatim}
- In []: m1 = matrix([1, 2, 3, 4])
+ In []: m1 = array([1, 2, 3, 4])
\end{verbatim}
\begin{itemize}
@@ -79,11 +79,25 @@
\begin{verbatim}
In []: l1 = [[1,2,3,4],[5,6,7,8]]
- In []: m2 = matrix(l1)
+ In []: m2 = array(l1)
\end{verbatim}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Exercise 1}
+\label{sec-3}
+
+ Create a (2, 4) matrix \texttt{m3}
+\begin{verbatim}
+ m3 = [[5, 6, 7, 8],
+ [9, 10, 11, 12]]
+\end{verbatim}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solution 1}
+\label{sec-4}
\begin{itemize}
-\item A matrix is basically an array
+\item m3 can be created as,
\end{itemize}
\begin{verbatim}
@@ -92,7 +106,7 @@
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrix operations}
-\label{sec-3}
+\label{sec-5}
\begin{itemize}
\item Element-wise addition (both matrix should be of order \texttt{mXn})
@@ -109,25 +123,25 @@
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrix Multiplication}
-\label{sec-4}
+\label{sec-6}
\begin{itemize}
-\item Matrix Multiplication
+\item Element-wise multiplication using \texttt{m3 * m2}
\begin{verbatim}
In []: m3 * m2
- Out []: ValueError: objects are not aligned
\end{verbatim}
-\item Element-wise multiplication using \texttt{multiply()}
+\item Matrix Multiplication using \texttt{dot(m3, m2)}
\begin{verbatim}
- multiply(m3, m2)
+ In []: dot(m3, m2)
+ Out []: ValueError: objects are not aligned
\end{verbatim}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Matrix Multiplication (cont'd)}
-\label{sec-5}
+\label{sec-7}
\begin{itemize}
\item Create two compatible matrices of order \texttt{nXm} and \texttt{mXr}
@@ -142,19 +156,19 @@
\item Creating another matrix of order \texttt{4 X 2}
\begin{verbatim}
- In []: m4 = matrix([[1,2],[3,4],[5,6],[7,8]])
+ In []: m4 = array([[1,2],[3,4],[5,6],[7,8]])
\end{verbatim}
\item Matrix multiplication
\begin{verbatim}
- In []: m1 * m4
+ In []: dot(m1, m4)
\end{verbatim}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Recall from \texttt{array}}
-\label{sec-6}
+\label{sec-8}
\begin{itemize}
\item The functions
@@ -178,7 +192,7 @@
\end{frame}
\begin{frame}[fragile]
\frametitle{More matrix operations}
-\label{sec-7}
+\label{sec-9}
Transpose of a matrix
\begin{verbatim}
@@ -186,8 +200,8 @@
\end{verbatim}
\end{frame}
\begin{frame}[fragile]
-\frametitle{Exercise 1 : Frobenius norm \& inverse}
-\label{sec-8}
+\frametitle{Exercise 2 : Frobenius norm \& inverse}
+\label{sec-10}
Find out the Frobenius norm of inverse of a \texttt{4 X 4} matrix.
\begin{verbatim}
@@ -196,7 +210,7 @@
The matrix is
\begin{verbatim}
- m5 = matrix(arange(1,17).reshape(4,4))
+ m5 = arange(1,17).reshape(4,4)
\end{verbatim}
\begin{itemize}
@@ -215,8 +229,8 @@
\end{itemize}
\end{frame}
\begin{frame}[fragile]
-\frametitle{Exercise 2: Infinity norm}
-\label{sec-9}
+\frametitle{Exercise 3 : Infinity norm}
+\label{sec-11}
Find the infinity norm of the matrix \texttt{im5}
\begin{verbatim}
@@ -230,7 +244,7 @@
\end{frame}
\begin{frame}[fragile]
\frametitle{\texttt{norm()} method}
-\label{sec-10}
+\label{sec-12}
\begin{itemize}
\item Frobenius norm
@@ -247,7 +261,7 @@
\end{frame}
\begin{frame}[fragile]
\frametitle{Determinant}
-\label{sec-11}
+\label{sec-13}
Find out the determinant of the matrix m5
\begin{verbatim}
@@ -265,7 +279,7 @@
\end{frame}
\begin{frame}[fragile]
\frametitle{eigen values \& eigen vectors}
-\label{sec-12}
+\label{sec-14}
Find out the eigen values and eigen vectors of the matrix \texttt{m5}.
\begin{verbatim}
@@ -300,7 +314,7 @@
\end{frame}
\begin{frame}[fragile]
\frametitle{Singular Value Decomposition (\texttt{svd})}
-\label{sec-13}
+\label{sec-15}
$M = U \Sigma V^*$
\begin{itemize}
@@ -318,7 +332,7 @@
\end{frame}
\begin{frame}
\frametitle{Summary}
-\label{sec-14}
+\label{sec-16}
\begin{itemize}
\item Matrices
@@ -337,7 +351,7 @@
\end{frame}
\begin{frame}
\frametitle{Thank you!}
-\label{sec-15}
+\label{sec-17}
\begin{block}{}
\begin{center}