added slides for other-type-of-plots.
Objective Questions
-------------------
1. If ``a = [1, 1, 2, 3, 3, 5, 5, 8]``. What is set(a)
a. set([1, 1, 2, 3, 3, 5, 5, 8])
#. set([1, 2, 3, 5, 8])
#. set([1, 2, 3, 3, 5, 5])
#. Error
Answer: set([1, 2, 3, 5, 8])
2. ``a = set([1, 3, 5])``. How do you find the length of a?
Answer: len(a)
3. ``a = set([1, 3, 5])``. What does a[2] produce?
a. 1
#. 3
#. 5
#. Error
Answer: Error
4. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What
is the value of ``odd | squares``?
Answer: set([1, 3, 4, 5, 7, 9, 16])
5. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What
is the value of ``odd - squares``?
Answer: set([3, 5, 7])
6. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What
is the value of ``odd ^ squares``?
Answer: set([3, 4, 5, 7, 16])
7. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What
does ``odd * squares`` give?
a. set([1, 12, 45, 112, 9])
#. set([1, 3, 4, 5, 7, 9, 16])
#. set([])
#. Error
Answer: Error
8. ``a = set([1, 2, 3, 4])`` and ``b = set([5, 6, 7, 8])``. What is ``a + b``
a. set([1, 2, 3, 4, 5, 6, 7, 8])
#. set([6, 8, 10, 12])
#. set([5, 12, 21, 32])
#. Error
9. ``a`` is a set. how do you check if if a varaible ``b`` exists in ``a``?
Answer: b in a
10. ``a`` and ``b`` are two sets. What is ``a ^ b == (a - b) | (b - a)``?
a. True
#. False
Answer: False
Larger Questions
----------------
1. Given that mat_marks is a list of maths marks of a class. Find out the
no.of duplicates marks in the list.
Answer::
unique_marks = set(mat_marks)
no_of_duplicates = len(mat_marks) - len(unique_marks)
2. Given that mat_marks is a list of maths marks of a class. Find how many
duplicates of each mark exist.
Answer::
marks_set = set(mat_marks)
for mark in marks_set:
occurences = mat_marks.count(mark)
print occurences - 1, "duplicates of", mark, "exist"