presentations/ode.tex
changeset 128 fa5c77536e4e
parent 127 76fd286276f7
child 129 dcb9b50761eb
child 146 b92b4e7ecd7b
equal deleted inserted replaced
127:76fd286276f7 128:fa5c77536e4e
     1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
     2 %Tutorial slides on Python.
       
     3 %
       
     4 % Author: FOSSEE 
       
     5 % Copyright (c) 2009, FOSSEE, IIT Bombay
       
     6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
     7 
       
     8 \documentclass[14pt,compress]{beamer}
       
     9 %\documentclass[draft]{beamer}
       
    10 %\documentclass[compress,handout]{beamer}
       
    11 %\usepackage{pgfpages} 
       
    12 %\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
       
    13 
       
    14 % Modified from: generic-ornate-15min-45min.de.tex
       
    15 \mode<presentation>
       
    16 {
       
    17   \usetheme{Warsaw}
       
    18   \useoutertheme{infolines}
       
    19   \setbeamercovered{transparent}
       
    20 }
       
    21 
       
    22 \usepackage[english]{babel}
       
    23 \usepackage[latin1]{inputenc}
       
    24 %\usepackage{times}
       
    25 \usepackage[T1]{fontenc}
       
    26 
       
    27 % Taken from Fernando's slides.
       
    28 \usepackage{ae,aecompl}
       
    29 \usepackage{mathpazo,courier,euler}
       
    30 \usepackage[scaled=.95]{helvet}
       
    31 
       
    32 \definecolor{darkgreen}{rgb}{0,0.5,0}
       
    33 
       
    34 \usepackage{listings}
       
    35 \lstset{language=Python,
       
    36     basicstyle=\ttfamily\bfseries,
       
    37     commentstyle=\color{red}\itshape,
       
    38   stringstyle=\color{darkgreen},
       
    39   showstringspaces=false,
       
    40   keywordstyle=\color{blue}\bfseries}
       
    41 
       
    42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    43 % Macros
       
    44 \setbeamercolor{emphbar}{bg=blue!20, fg=black}
       
    45 \newcommand{\emphbar}[1]
       
    46 {\begin{beamercolorbox}[rounded=true]{emphbar} 
       
    47       {#1}
       
    48  \end{beamercolorbox}
       
    49 }
       
    50 \newcounter{time}
       
    51 \setcounter{time}{0}
       
    52 \newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
       
    53 
       
    54 \newcommand{\typ}[1]{\lstinline{#1}}
       
    55 
       
    56 \newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}}  }
       
    57 
       
    58 % Title page
       
    59 \title{Python for Scientific Computing: Ordinary Differential Equation}
       
    60 
       
    61 \author[FOSSEE] {FOSSEE}
       
    62 
       
    63 \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
       
    64 \date{}
       
    65 
       
    66 % DOCUMENT STARTS
       
    67 \begin{document}
       
    68 
       
    69 \begin{frame}
       
    70   \maketitle
       
    71 \end{frame}
       
    72 
       
    73 \begin{frame}
       
    74   \frametitle{About the Session}
       
    75   \begin{block}{Goal}
       
    76 Solving ordinary differential equations.
       
    77   \end{block}
       
    78   \begin{block}{Prerequisite}
       
    79     \begin{itemize}
       
    80     \item Understanding of Arrays.
       
    81     \item functions and lists
       
    82     \end{itemize}    
       
    83   \end{block}
       
    84 \end{frame}
       
    85 
       
    86 \begin{frame}[fragile]
       
    87 \frametitle{Solving ODEs using SciPy}
       
    88 \begin{itemize}
       
    89 \item Let's consider the spread of an epidemic in a population
       
    90 \item $\frac{dy}{dt} = ky(L-y)$ gives the spread of the disease
       
    91 \item L is the total population.
       
    92 \item Use L = 250000, k = 0.00003, y(0) = 250
       
    93 \end{itemize}
       
    94 \end{frame}
       
    95 
       
    96 \begin{frame}[fragile]
       
    97 \frametitle{ODEs - Simple Pendulum}
       
    98 We shall use the simple ODE of a simple pendulum. 
       
    99 \begin{equation*}
       
   100 \ddot{\theta} = -\frac{g}{L}sin(\theta)
       
   101 \end{equation*}
       
   102 \begin{itemize}
       
   103 \item This equation can be written as a system of two first order ODEs
       
   104 \end{itemize}
       
   105 \begin{align}
       
   106 \dot{\theta} &= \omega \\
       
   107 \dot{\omega} &= -\frac{g}{L}sin(\theta) \\
       
   108  \text{At}\ t &= 0 : \nonumber \\
       
   109  \theta = \theta_0(10^o)\quad & \&\quad  \omega = 0\ (Initial\ values)\nonumber 
       
   110 \end{align}
       
   111 \end{frame}
       
   112 
       
   113 \begin{frame}[fragile]
       
   114   \frametitle{Summary}
       
   115   \begin{block}{}
       
   116     Solving ordinary differential equations
       
   117   \end{block}
       
   118 \end{frame}
       
   119 
       
   120 \begin{frame}
       
   121   \frametitle{Thank you!}  
       
   122   \begin{block}{}
       
   123   This session is part of \textcolor{blue}{FOSSEE} project funded by:
       
   124   \begin{center}
       
   125     \textcolor{blue}{NME through ICT from MHRD, Govt. of India}.
       
   126   \end{center}  
       
   127   \end{block}
       
   128 \end{frame}
       
   129 
       
   130 \end{document}