|
1 #+LaTeX_CLASS: beamer |
|
2 #+LaTeX_CLASS_OPTIONS: [presentation] |
|
3 #+BEAMER_FRAME_LEVEL: 1 |
|
4 |
|
5 #+BEAMER_HEADER_EXTRA: \usetheme{Warsaw}\usecolortheme{default}\useoutertheme{infolines}\setbeamercovered{transparent} |
|
6 #+COLUMNS: %45ITEM %10BEAMER_env(Env) %10BEAMER_envargs(Env Args) %4BEAMER_col(Col) %8BEAMER_extra(Extra) |
|
7 #+PROPERTY: BEAMER_col_ALL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 :ETC |
|
8 |
|
9 #+LaTeX_CLASS: beamer |
|
10 #+LaTeX_CLASS_OPTIONS: [presentation] |
|
11 |
|
12 #+LaTeX_HEADER: \usepackage[english]{babel} \usepackage{ae,aecompl} |
|
13 #+LaTeX_HEADER: \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet} |
|
14 |
|
15 #+LaTeX_HEADER: \usepackage{listings} |
|
16 |
|
17 #+LaTeX_HEADER:\lstset{language=Python, basicstyle=\ttfamily\bfseries, |
|
18 #+LaTeX_HEADER: commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen}, |
|
19 #+LaTeX_HEADER: showstringspaces=false, keywordstyle=\color{blue}\bfseries} |
|
20 |
|
21 #+TITLE: Getting started with symbolics |
|
22 #+AUTHOR: FOSSEE |
|
23 #+EMAIL: |
|
24 #+DATE: |
|
25 |
|
26 #+DESCRIPTION: |
|
27 #+KEYWORDS: |
|
28 #+LANGUAGE: en |
|
29 #+OPTIONS: H:3 num:nil toc:nil \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t |
|
30 #+OPTIONS: TeX:t LaTeX:nil skip:nil d:nil todo:nil pri:nil tags:not-in-toc |
|
31 |
|
32 * Outline |
|
33 - Defining symbolic expressions in sage. |
|
34 - Using built-in constants and functions. |
|
35 - Performing Integration, differentiation using sage. |
|
36 - Defining matrices. |
|
37 - Defining Symbolic functions. |
|
38 - Simplifying and solving symbolic expressions and functions. |
|
39 |
|
40 * Questions 1 |
|
41 - Define the following expression as symbolic |
|
42 expression in sage. |
|
43 |
|
44 - x^2+y^2 |
|
45 - y^2-4ax |
|
46 |
|
47 * Solutions 1 |
|
48 #+begin_src python |
|
49 var('x,y') |
|
50 x^2+y^2 |
|
51 |
|
52 var('a,x,y') |
|
53 y^2-4*a*x |
|
54 #+end_src python |
|
55 * Questions 2 |
|
56 - Find the values of the following constants upto 6 digits precision |
|
57 |
|
58 - pi^2 |
|
59 |
|
60 |
|
61 - Find the value of the following. |
|
62 |
|
63 - sin(pi/4) |
|
64 - ln(23) |
|
65 |
|
66 * Solutions 2 |
|
67 #+begin_src python |
|
68 n(pi^2,digits=6) |
|
69 n(sin(pi/4)) |
|
70 n(log(23,e)) |
|
71 #+end_src python |
|
72 * Question 2 |
|
73 - Define the piecewise function. |
|
74 f(x)=3x+2 |
|
75 when x is in the closed interval 0 to 4. |
|
76 f(x)=4x^2 |
|
77 between 4 to 6. |
|
78 |
|
79 - Sum of 1/(n^2-1) where n ranges from 1 to infinity. |
|
80 |
|
81 * Solution Q1 |
|
82 #+begin_src python |
|
83 var('x') |
|
84 h(x)=3*x+2 |
|
85 g(x)= 4*x^2 |
|
86 f=Piecewise([[(0,4),h(x)],[(4,6),g(x)]],x) |
|
87 f |
|
88 #+end_src python |
|
89 * Solution Q2 |
|
90 #+begin_src python |
|
91 var('n') |
|
92 f=1/(n^2-1) |
|
93 sum(f(n), n, 1, oo) |
|
94 #+end_src python |
|
95 |
|
96 |
|
97 * Questions 3 |
|
98 - Differentiate the following. |
|
99 |
|
100 - x^5*log(x^7) , degree=4 |
|
101 |
|
102 - Integrate the given expression |
|
103 |
|
104 - x*sin(x^2) |
|
105 |
|
106 - Find x |
|
107 - cos(x^2)-log(x)=0 |
|
108 - Does the equation have a root between 1,2. |
|
109 |
|
110 * Solutions 3 |
|
111 #+begin_src python |
|
112 var('x') |
|
113 f(x)= x^5*log(x^7) |
|
114 diff(f(x),x,5) |
|
115 |
|
116 var('x') |
|
117 integral(x*sin(x^2),x) |
|
118 |
|
119 var('x') |
|
120 f=cos(x^2)-log(x) |
|
121 find_root(f(x)==0,1,2) |
|
122 #+end_src |
|
123 |
|
124 * Question 4 |
|
125 - Find the determinant and inverse of : |
|
126 |
|
127 A=[[x,0,1][y,1,0][z,0,y]] |
|
128 |
|
129 * Solution 4 |
|
130 #+begin_src python |
|
131 var('x,y,z') |
|
132 A=matrix([[x,0,1],[y,1,0],[z,0,y]]) |
|
133 A.det() |
|
134 A.inverse() |
|
135 #+end_src |
|
136 * Summary |
|
137 - We learnt about defining symbolic |
|
138 expression and functions. |
|
139 - Using built-in constants and functions. |
|
140 - Using <Tab> to see the documentation of a |
|
141 function. |
|
142 |
|
143 * Summary |
|
144 - Simple calculus operations . |
|
145 - Substituting values in expression |
|
146 using substitute function. |
|
147 - Creating symbolic matrices and |
|
148 performing operation on them . |
|
149 |
|
150 * Thank you! |
|
151 #+begin_latex |
|
152 \begin{block}{} |
|
153 \begin{center} |
|
154 This spoken tutorial has been produced by the |
|
155 \textcolor{blue}{FOSSEE} team, which is funded by the |
|
156 \end{center} |
|
157 \begin{center} |
|
158 \textcolor{blue}{National Mission on Education through \\ |
|
159 Information \& Communication Technology \\ |
|
160 MHRD, Govt. of India}. |
|
161 \end{center} |
|
162 \end{block} |
|
163 #+end_latex |
|
164 |
|
165 |
|
166 |