thirdparty/google_appengine/lib/django/tests/regressiontests/datastructures/tests.py
author Daniel Bentley <dbentley@google.com>
Sun, 12 Apr 2009 09:06:45 +0000
branchgae-fetch-limitation-fix
changeset 2313 c39a81bce1bd
parent 109 620f9b141567
permissions -rwxr-xr-x
Use offset_linkid instead of offset to scan >1000 entities. this is a first-cut. It works in all the ways I could make earlier versions fail. It passes link_id as URL parameters. It also has a new class LinkCreator which makes the main body of getListContents even easier to write. I wasn't sure if link_id's could have non alphanumeric characters; if so, they need to be URL encoded/decoded. I also need to go and remove any mention of raw offsets now, because we don't use them. I believe I've talked about this approach with a few of you and it sounded reasonable. Feel free to roll-back/fix/amend/comment-for-me-to-fix. This is my first big-logic-change to Melange. Patch by: Dan Bentley

"""
# Tests for stuff in django.utils.datastructures.

>>> from django.utils.datastructures import *

### MergeDict #################################################################

>>> d1 = {'chris':'cool','camri':'cute','cotton':'adorable','tulip':'snuggable', 'twoofme':'firstone'}
>>> d2 = {'chris2':'cool2','camri2':'cute2','cotton2':'adorable2','tulip2':'snuggable2'}
>>> d3 = {'chris3':'cool3','camri3':'cute3','cotton3':'adorable3','tulip3':'snuggable3'}
>>> d4 = {'twoofme':'secondone'}
>>> md = MergeDict( d1,d2,d3 )
>>> md['chris']
'cool'
>>> md['camri']
'cute'
>>> md['twoofme']
'firstone'
>>> md2 = md.copy()
>>> md2['chris']
'cool'

### MultiValueDict ##########################################################

>>> d = MultiValueDict({'name': ['Adrian', 'Simon'], 'position': ['Developer']})
>>> d['name']
'Simon'
>>> d.getlist('name')
['Adrian', 'Simon']
>>> d.get('lastname', 'nonexistent')
'nonexistent'
>>> d.setlist('lastname', ['Holovaty', 'Willison'])

### SortedDict #################################################################

>>> d = SortedDict()
>>> d['one'] = 'one'
>>> d['two'] = 'two'
>>> d['three'] = 'three'
>>> d['one']
'one'
>>> d['two']
'two'
>>> d['three']
'three'
>>> d.keys()
['one', 'two', 'three']
>>> d.values()
['one', 'two', 'three']
>>> d['one'] = 'not one'
>>> d['one']
'not one'
>>> d.keys() == d.copy().keys()
True

### DotExpandedDict ############################################################

>>> d = DotExpandedDict({'person.1.firstname': ['Simon'], 'person.1.lastname': ['Willison'], 'person.2.firstname': ['Adrian'], 'person.2.lastname': ['Holovaty']})
>>> d['person']['1']['lastname']
['Willison']
>>> d['person']['2']['lastname']
['Holovaty']
>>> d['person']['2']['firstname']
['Adrian']
"""