Use offset_linkid instead of offset to scan >1000 entities.
this is a first-cut. It works in all the ways I could make earlier
versions fail. It passes link_id as URL parameters. It also has a new
class LinkCreator which makes the main body of getListContents even easier
to write.
I wasn't sure if link_id's could have non alphanumeric characters; if so, they
need to be URL encoded/decoded.
I also need to go and remove any mention of raw offsets now, because we don't
use them.
I believe I've talked about this approach with a few of you and it sounded
reasonable. Feel free to roll-back/fix/amend/comment-for-me-to-fix. This is
my first big-logic-change to Melange.
Patch by: Dan Bentley
"""
Custom Query class for Oracle.
Derives from: django.db.models.sql.query.Query
"""
import datetime
from django.db.backends import util
# Cache. Maps default query class to new Oracle query class.
_classes = {}
def query_class(QueryClass, Database):
"""
Returns a custom django.db.models.sql.query.Query subclass that is
appropriate for Oracle.
The 'Database' module (cx_Oracle) is passed in here so that all the setup
required to import it only needs to be done by the calling module.
"""
global _classes
try:
return _classes[QueryClass]
except KeyError:
pass
class OracleQuery(QueryClass):
def resolve_columns(self, row, fields=()):
# If this query has limit/offset information, then we expect the
# first column to be an extra "_RN" column that we need to throw
# away.
if self.high_mark is not None or self.low_mark:
rn_offset = 1
else:
rn_offset = 0
index_start = rn_offset + len(self.extra_select.keys())
values = [self.convert_values(v, None)
for v in row[rn_offset:index_start]]
for value, field in map(None, row[index_start:], fields):
values.append(self.convert_values(value, field))
return values
def convert_values(self, value, field):
from django.db.models.fields import DateField, DateTimeField, \
TimeField, BooleanField, NullBooleanField, DecimalField, Field
if isinstance(value, Database.LOB):
value = value.read()
# Oracle stores empty strings as null. We need to undo this in
# order to adhere to the Django convention of using the empty
# string instead of null, but only if the field accepts the
# empty string.
if value is None and isinstance(field, Field) and field.empty_strings_allowed:
value = u''
# Convert 1 or 0 to True or False
elif value in (1, 0) and isinstance(field, (BooleanField, NullBooleanField)):
value = bool(value)
# Convert floats to decimals
elif value is not None and isinstance(field, DecimalField):
value = util.typecast_decimal(field.format_number(value))
# cx_Oracle always returns datetime.datetime objects for
# DATE and TIMESTAMP columns, but Django wants to see a
# python datetime.date, .time, or .datetime. We use the type
# of the Field to determine which to cast to, but it's not
# always available.
# As a workaround, we cast to date if all the time-related
# values are 0, or to time if the date is 1/1/1900.
# This could be cleaned a bit by adding a method to the Field
# classes to normalize values from the database (the to_python
# method is used for validation and isn't what we want here).
elif isinstance(value, Database.Timestamp):
# In Python 2.3, the cx_Oracle driver returns its own
# Timestamp object that we must convert to a datetime class.
if not isinstance(value, datetime.datetime):
value = datetime.datetime(value.year, value.month,
value.day, value.hour, value.minute, value.second,
value.fsecond)
if isinstance(field, DateTimeField):
# DateTimeField subclasses DateField so must be checked
# first.
pass
elif isinstance(field, DateField):
value = value.date()
elif isinstance(field, TimeField) or (value.year == 1900 and value.month == value.day == 1):
value = value.time()
elif value.hour == value.minute == value.second == value.microsecond == 0:
value = value.date()
return value
def as_sql(self, with_limits=True, with_col_aliases=False):
"""
Creates the SQL for this query. Returns the SQL string and list
of parameters. This is overriden from the original Query class
to handle the additional SQL Oracle requires to emulate LIMIT
and OFFSET.
If 'with_limits' is False, any limit/offset information is not
included in the query.
"""
# The `do_offset` flag indicates whether we need to construct
# the SQL needed to use limit/offset with Oracle.
do_offset = with_limits and (self.high_mark is not None
or self.low_mark)
if not do_offset:
sql, params = super(OracleQuery, self).as_sql(with_limits=False,
with_col_aliases=with_col_aliases)
else:
sql, params = super(OracleQuery, self).as_sql(with_limits=False,
with_col_aliases=True)
# Wrap the base query in an outer SELECT * with boundaries on
# the "_RN" column. This is the canonical way to emulate LIMIT
# and OFFSET on Oracle.
sql = 'SELECT * FROM (SELECT ROW_NUMBER() OVER (ORDER BY 1) AS "_RN", "_SUB".* FROM (%s) "_SUB") WHERE "_RN" > %d' % (sql, self.low_mark)
if self.high_mark is not None:
sql = '%s AND "_RN" <= %d' % (sql, self.high_mark)
return sql, params
_classes[QueryClass] = OracleQuery
return OracleQuery