# HG changeset patch # User Madhusudan.C.S # Date 1256742089 -19800 # Node ID 1ebf842cb0350ed547e05f61f1e71b73a062f48d # Parent 786aa938a5c3f69babdf8cbfb3dd3b00ddec7dde Added sslc.py Session 3 day 1 solution code. diff -r 786aa938a5c3 -r 1ebf842cb035 day1/sslc1.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/day1/sslc1.py Wed Oct 28 20:31:29 2009 +0530 @@ -0,0 +1,50 @@ +from pylab import * +from scipy import * +from scipy import stats + +scores = [[], [], [], [], []] +ninety_percents = [{}, {}, {}, {}, {}] + +for record in open('sslc1.txt'): + record = record.strip() + fields = record.split(';') + + region_code = fields[0].strip() + + for i, field in enumerate(fields[3:8]): + if region_code not in ninety_percents[i]: + ninety_percents[i][region_code] = 0 + score_str = field.strip() + score = 0 if score_str == 'AA' else int(score_str) + scores[i].append(score) + if score > 90: + ninety_percents[i][region_code] += 1 + +subj_total = [] +for subject in ninety_percents: + subj_total.append(sum(subject.values())) + + +figure(1) +pie(ninety_percents[3].values(), labels=ninety_percents[3].keys()) +title('Students scoring 90% and above in science by region') +savefig('/tmp/science.png') + +figure(2) +pie(subj_total, labels=['English', 'Hindi', 'Maths', 'Science', 'Social']) +title('Students scoring more than 90% by subject(All regions combined).') +savefig('/tmp/all_regions.png') + +math_scores = array(scores[2]) +# Mean score in Maths(All regions combined) +print "Mean: ", mean(math_scores) + +# Median score in Maths(All regions combined) +print "Median: ", median(math_scores) + +# Mode score in Maths(All regions combined) +print "Mode: ", stats.mode(math_scores) + +# Standard deviation of scores in Maths(All regions combined) +print "Standard Deviation: ", std(math_scores) +