# HG changeset patch # User Madhusudan.C.S # Date 1256742126 -19800 # Node ID 135062d6f91f43a4270865c7c663ad7ba88aec41 # Parent 1ebf842cb0350ed547e05f61f1e71b73a062f48d Fixed typos and hanging words in Session 3 day 1. diff -r 1ebf842cb035 -r 135062d6f91f day1/session3.tex --- a/day1/session3.tex Wed Oct 28 20:31:29 2009 +0530 +++ b/day1/session3.tex Wed Oct 28 20:32:06 2009 +0530 @@ -126,7 +126,7 @@ %% % You might wish to add the option [pausesections] %% \end{frame} -\section{Statistics} +\section{Processing voluminous data} \begin{frame} \frametitle{More on data processing} \begin{block}{} @@ -136,13 +136,31 @@ \begin{frame} - \frametitle{Statistical Analysis and Parsing} - Read the data supplied in \emph{sslc1.txt} and obtain the following statistics: - \begin{itemize} - \item Draw a pie chart representing the number of students who scored more than 90\% in Science per region. - \item Draw a pie chart representing the number of students who scored more than 90\% per subject(All regions combined). + \frametitle{Statistical Analysis: Problem statement} + Read the data supplied in \emph{sslc1.txt} and carry out the following: + \begin{enumerate} + \item Draw a pie chart representing the proportion of students who scored more than 90\% in each region in Science. + \item Draw a pie chart representing the proportion of students who scored more than 90\% in each subject across regions. \item Print mean, median, mode and standard deviation of math scores for all regions combined. - \end{itemize} + \end{enumerate} +\end{frame} + +\begin{frame} + \frametitle{Problem statement: explanation} + \emphbar{Draw a pie chart representing the proportion of students who scored more than 90\% in each region in Science.} + \begin{enumerate} + \item Complete(100\%) data - Number of students who scored more than 90\% in Science + \item Each slice - Number of students who scored more than 90\% in Science in one region + \end{enumerate} +\end{frame} + +\begin{frame} + \frametitle{Problem statement: explanation} + \emphbar{Draw a pie chart representing the proportion of students who scored more than 90\% in each subject across regions.} + \begin{enumerate} + \item Complete(100\%) data - Number of students who scored more than 90\% across all regions + \item Each slice - Number of students who scored more than 90\% in each subject across all regions + \end{enumerate} \end{frame} \begin{frame} @@ -161,9 +179,9 @@ \frametitle{File reading and parsing} Understanding the structure of sslc1.txt \begin{itemize} - \item Each line in the file corresponds to one student's details + \item One line in file corresponds to a student's details \item aka record - \item Each record consists of several fields separated by a ';' + \item Each record consists of fields separated by ';' \end{itemize} \end{frame} @@ -235,6 +253,19 @@ \end{frame} \begin{frame}[fragile] + \frametitle{Back to lists: Iterating} + \begin{itemize} + \item Python's \kwrd{for} loop iterates through list items + \item In other languages (C/C++) we run through indices and pick items from the array using these indices + \item In Python, while iterating through list items current position is not available + \end{itemize} + \begin{block}{Iterating through indices} + What if we want the index of an item of a list? + \end{block} + +\end{frame} + +\begin{frame}[fragile] \frametitle{enumerate: Iterating through list indices} \begin{lstlisting} In [1]: names = ["Guido","Alex", "Tim"] @@ -250,7 +281,7 @@ \end{frame} \begin{frame}[fragile] - \frametitle{Dictionary: Building parsed data} + \frametitle{Continuing with our Dictionary} Let our dictionary be: \begin{lstlisting} science = {} # is an empty dictionary @@ -296,7 +327,7 @@ \end{lstlisting} \end{frame} -\subsection{Visualizing the data} +\subsection{Visualizing data} \begin{frame}[fragile] \frametitle{Pie charts} \small @@ -388,7 +419,59 @@ \includegraphics[height=3in, interpolate=true]{data/all_regions} \end{frame} -\subsection{Obtaining stastics} +\subsection{Obtaining statistics} +\begin{frame}[fragile] + \frametitle{Obtaining statistics} + \begin{block}{Statistics: Mean} + Obtain the mean of Math scores + \end{block} +\end{frame} + +\begin{frame}[fragile] + \frametitle{Obtaining statistics: Solution} + \begin{block}{Statistics: Mean} + Obtain the mean of Math scores + \end{block} + \begin{lstlisting} +math_scores = scores[2] +total = 0 +for i, score in enumerate(math_scores): + total += score + +mean = total / (i + 1) +print "Mean: ", mean + \end{lstlisting} +\end{frame} + +\begin{frame}[fragile] + \frametitle{Obtaining statistics: Another solution} + \begin{block}{Statistics: Mean} + Obtain the mean of Math scores + \end{block} + \begin{lstlisting} +math_scores = scores[2] +mean = sum(math_scores) / + len(math_scores) + \end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{NumPy arrays} + \begin{itemize} + \item NumPy provides arrays + \item arrays are very efficient and powerful + \item Very easy to perform element-wise operations - \typ{+, -, *, /, \%} + \begin{lstlisting} +In [1]: a = array([1, 2, 3]) +In [2]: b = array([4, 5, 6]) + +In [3]: a + b +Out[3]: array([5, 7, 9]) + \end{lstlisting} + \item Very easy to compute statistics + \end{itemize} +\end{frame} + \begin{frame}[fragile] \frametitle{Obtaining statistics} \begin{lstlisting} @@ -416,6 +499,7 @@ \end{itemize} \end{frame} +\section{Least square fit} \begin{frame} \frametitle{L vs $T^2$ \ldots} Let's go back to the L vs $T^2$ plot @@ -444,17 +528,6 @@ \end{frame} \begin{frame}[fragile] -\frametitle{Arrays} -\begin{itemize} -\item \typ{T} and \typ{L} are now arrays -\item arrays are very efficient and powerful -\item Very easy to perform element-wise operations -\item \typ{+, -, *, /, \%} -\item More about arrays later -\end{itemize} -\end{frame} - -\begin{frame}[fragile] \frametitle{Least Squares Fit} \vspace{-0.15in} \begin{figure} @@ -508,6 +581,7 @@ \end{itemize} \end{frame} +\subsection{Van der Monde matrix generation} \begin{frame}[fragile] \frametitle{Van der Monde Matrix} \begin{itemize} @@ -539,6 +613,7 @@ \end{lstlisting} \end{frame} +\subsection{Plotting} \begin{frame}[fragile] \frametitle{Least Square Fit Line \ldots} We get the points of the line from \typ{coef} @@ -553,4 +628,13 @@ \end{lstlisting} \end{frame} +\begin{frame}[fragile] + \frametitle{What did we learn?} + \begin{itemize} + \item Least square fit + \item Van der Monde matrix generation + \item Plotting the least square fit curve + \end{itemize} +\end{frame} + \end{document}