diff -r d47d36d057a7 -r f87f2a310abe day1/cheatsheet3.tex --- a/day1/cheatsheet3.tex Tue Nov 10 16:27:03 2009 +0530 +++ b/day1/cheatsheet3.tex Tue Nov 10 17:22:07 2009 +0530 @@ -1,6 +1,22 @@ \documentclass[12pt]{article} \title{Interactive Plotting} \author{FOSSEE} + +\usepackage{listings} +\lstset{language=Python, + basicstyle=\ttfamily, + commentstyle=\itshape\bfseries, + showstringspaces=false, +} +\newcommand{\typ}[1]{\lstinline{#1}} +\usepackage[english]{babel} +\usepackage[latin1]{inputenc} +\usepackage{times} +\usepackage[T1]{fontenc} +\usepackage{ae,aecompl} +\usepackage{mathpazo,courier,euler} +\usepackage[scaled=.95]{helvet} + \begin{document} \date{} \vspace{-1in} @@ -10,54 +26,59 @@ \end{center} \section{Statistics} Dictionary -\begin{verbatim} -In [1]: d = {"Hitchhiker's guide" : 42, - ....: "Terminator" : "I'll be back"} #Creation -In [2]: d["Hitchhiker's guide"] # Accessing a value with key -In [3]: "Hitchhiker's guide" in d #Checking for a key -In [4]: d.keys() # Obtaining List of Keys -In [5]: d.values() # Obtaining List of Values -\end{verbatim} +\begin{lstlisting} +In []: d = {"Hitchhiker's guide" : 42, + ....: "Terminator" : "I'll be back"} #Creation +In []: d["Hitchhiker's guide"] # Accessing a value with key +In []: "Hitchhiker's guide" in d #Checking for a key +In []: d.keys() # Obtaining List of Keys +In []: d.values() # Obtaining List of Values +\end{lstlisting} Iterating through List indices -\begin{verbatim} -In [1]: names = ["Guido","Alex", "Tim"] -In [2]: for i, name in enumerate(names): - ...: print i, name -\end{verbatim} - -\begin{verbatim} -In [1]: score = int(score_str) if score_str != 'AA' else 0 -\end{verbatim} -Drawing Pie Charts -\begin{verbatim} -In [1]: pie(science.values(), labels=science.keys()) -\end{verbatim} +\begin{lstlisting} +In []: names = ["Guido","Alex", "Tim"] +In []: for i, name in enumerate(names): + ...: print i, name +\end{lstlisting} +Computing Mean value of `\texttt{g}' +\begin{lstlisting} +In []: G = [] +In []: for line in open('pendulum.txt'): + .... points = line.split() + .... l = float(points[0]) + .... t = float(points[1]) + .... g = 4 * pi * pi * l / t * t + .... G.append(g) +\end{lstlisting} sum() and len() functions -\begin{verbatim} -In [1]: mean = sum(math_scores) / len(math_scores) -\end{verbatim} +\begin{lstlisting} + total = 0 + for g in G: + total += g + mean_g = total / len(g) + + mean_g = sum(G) / len(G) + mean_g = mean(G) +\end{lstlisting} +\newpage +Ternary Operator +\begin{lstlisting} +In []: score = int(score_str) if score_str != 'AA' else 0 +\end{lstlisting} +Drawing Pie Charts +\begin{lstlisting} +In []: pie(science.values(), labels=science.keys()) +\end{lstlisting} Numpy Arrays -\begin{verbatim} -In [1]: a = array([1, 2, 3]) #Creating -In [2]: b = array([4, 5, 6]) -In [3]: a + b #Sum; Element-wise -\end{verbatim} +\begin{lstlisting} +In []: a = array([1, 2, 3]) #Creating +In []: b = array([4, 5, 6]) +In []: a + b #Sum; Element-wise +\end{lstlisting} Numpy statistical operations -\begin{verbatim} -In [1]: mean(math_scores) -In [2]: median(math_scores) -In [3]: stats.mode(math_scores) -In [4]: std(math_scores) -\end{verbatim} -Generating Van der Monde matrix -\begin{verbatim} -In [1]: A = vander(L, 2) -\end{verbatim} -Getting a Least Squares Fit curve -\begin{verbatim} -In [1]: coef, res, r, s = lstsq(A,TSq) -In [2]: Tline = coef[0]*L + coef[1] -In [3]: plot(L, Tline) -\end{verbatim} +\begin{lstlisting} +In []: mean(math_scores) +In []: median(math_scores) +In []: std(math_scores) +\end{lstlisting} \end{document} -