Added lena.png.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: FOSSEE
% Copyright (c) 2009, FOSSEE, IIT Bombay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
\usetheme{Warsaw}
\useoutertheme{infolines}
\setbeamercovered{transparent}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\usepackage{amsmath}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily\bfseries,
commentstyle=\color{red}\itshape,
stringstyle=\color{darkgreen},
showstringspaces=false,
keywordstyle=\color{blue}\bfseries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar}
{#1}
\end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
\newcommand{\typ}[1]{\lstinline{#1}}
\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
% language=Python,
% basicstyle=\small\ttfamily,
% commentstyle=\ttfamily\color{blue},
% stringstyle=\ttfamily\color{orange},
% showstringspaces=false,
% breaklines=true,
% postbreak = \space\dots
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[Statistics]{Python for Science and Engg: Statistics}
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {31 October, 2009\\Day 1, Session 3}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}
%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\newcommand{\num}{\texttt{numpy}}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}
\begin{frame}
\maketitle
\end{frame}
%% \begin{frame}
%% \frametitle{Outline}
%% \tableofcontents
%% % You might wish to add the option [pausesections]
%% \end{frame}
\section{Processing voluminous data}
\begin{frame}
\frametitle{More on data processing}
\begin{block}{}
We have a huge--1m records--data file.\\How do we do \emph{efficient} statistical computations, that is find mean, median, mode, standard deveiation etc; draw pie charts?
\end{block}
\end{frame}
\begin{frame}
\frametitle{Statistical Analysis: Problem statement}
Read the data supplied in \emph{sslc1.txt} and carry out the following:
\begin{enumerate}
\item Draw a pie chart representing the proportion of students who scored more than 90\% in each region in Science.
\item Draw a pie chart representing the proportion of students who scored more than 90\% in each subject across regions.
\item Print mean, median, mode and standard deviation of math scores for all regions combined.
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Problem statement: explanation}
\emphbar{Draw a pie chart representing the proportion of students who scored more than 90\% in each region in Science.}
\begin{enumerate}
\item Complete(100\%) data - Number of students who scored more than 90\% in Science
\item Each slice - Number of students who scored more than 90\% in Science in one region
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Problem statement: explanation}
\emphbar{Draw a pie chart representing the proportion of students who scored more than 90\% in each subject across regions.}
\begin{enumerate}
\item Complete(100\%) data - Number of students who scored more than 90\% across all regions
\item Each slice - Number of students who scored more than 90\% in each subject across all regions
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Statistical Analysis and Parsing \ldots}
Machinery Required -
\begin{itemize}
\item File reading
\item Parsing
\item Dictionaries
\item NumPy arrays
\item Statistical operations
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{File reading and parsing}
Understanding the structure of sslc1.txt
\begin{itemize}
\item One line in file corresponds to a student's details
\item aka record
\item Each record consists of fields separated by ';'
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{File reading and parsing \ldots}
Each record consists of:
\begin{itemize}
\item Region Code
\item Roll Number
\item Name
\item Marks of 5 subjects: English, Hindi, Maths, Science, Social
\item Total marks
\item Pass/Fail (P/F)
\item Withdrawn (W)
\end{itemize}
\inctime{5}
\end{frame}
\subsection{Data processing}
\begin{frame}[fragile]
\frametitle{File reading and parsing \ldots}
\begin{lstlisting}
for record in open('sslc1.txt'):
fields = record.split(';')
\end{lstlisting}
\end{frame}
\subsection{Dictionary}
\begin{frame}[fragile]
\frametitle{Dictionary: Introduction}
\begin{itemize}
\item lists index: 0 \ldots n
\item dictionaries index using strings
\end{itemize}
\begin{block}{Example}
d = \{ ``Hitchhiker's guide'' : 42,
``Terminator'' : ``I'll be back''\}\\
d[``Terminator''] => ``I'll be back''
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Dictionary: Introduction}
\begin{lstlisting}
In [1]: d = {"Hitchhiker's guide" : 42,
"Terminator" : "I'll be back"}
In [2]: d["Hitchhiker's guide"]
Out[2]: 42
In [3]: "Hitchhiker's guide" in d
Out[3]: True
In [4]: "Guido" in d
Out[4]: False
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Dictionary: Introduction}
\begin{lstlisting}
In [5]: d.keys()
Out[5]: ['Terminator', "Hitchhiker's
guide"]
In [6]: d.values()
Out[6]: ["I'll be back", 42]
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Back to lists: Iterating}
\begin{itemize}
\item Python's \kwrd{for} loop iterates through list items
\item In other languages (C/C++) we run through indices and pick items from the array using these indices
\item In Python, while iterating through list items current position is not available
\end{itemize}
\begin{block}{Iterating through indices}
What if we want the index of an item of a list?
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{enumerate: Iterating through list indices}
\begin{lstlisting}
In [1]: names = ["Guido","Alex", "Tim"]
In [2]: for i, name in enumerate(names):
...: print i, name
...:
0 Guido
1 Alex
2 Tim
\end{lstlisting}
\inctime{5}
\end{frame}
\begin{frame}[fragile]
\frametitle{Continuing with our Dictionary}
Let our dictionary be:
\begin{lstlisting}
science = {} # is an empty dictionary
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Dictionary - Building parsed data}
\begin{itemize}
\item \emph{Keys} of \emph{science} will be region codes
\item Value of a \emph{science} will be the number students who scored more than 90\% in that region
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Building parsed data \ldots}
\begin{lstlisting}
from pylab import pie
science = {}
for record in open('sslc1.txt'):
record = record.strip()
fields = record.split(';')
region_code = fields[0].strip()
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Building parsed data \ldots}
\begin{lstlisting}
if region_code not in science:
science[region_code] = 0
score_str = fields[4].strip()
score = int(score_str) if
score_str != 'AA' else 0
if score > 90:
science[region_code] += 1
\end{lstlisting}
\end{frame}
\subsection{Visualizing data}
\begin{frame}[fragile]
\frametitle{Pie charts}
\small
\begin{lstlisting}
figure(1)
pie(science.values(),
labels=science.keys())
title('Students scoring 90% and above
in science by region')
savefig('/tmp/science.png')
\end{lstlisting}
\begin{columns}
\column{5.25\textwidth}
\hspace*{1.1in}
\includegraphics[height=2in, interpolate=true]{data/science}
\column{0.8\textwidth}
\end{columns}
\inctime{5}
\end{frame}
\begin{frame}[fragile]
\frametitle{Building data for all subjects \ldots}
\begin{lstlisting}
from pylab import pie
from scipy import mean, median, std
from scipy import stats
scores = [[], [], [], [], []]
ninety_percents = [{}, {}, {}, {}, {}]
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Building data for all subjects \ldots}
\begin{lstlisting}
for record in open('sslc1.txt'):
record = record.strip()
fields = record.split(';')
region_code = fields[0].strip()
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Building data for all subjects \ldots}
\small
\begin{lstlisting}
for i, field in enumerate(fields[3:8]):
if region_code not in ninety_percents[i]:
ninety_percents[i][region_code] = 0
score_str = field.strip()
score = int(score_str) if
score_str != 'AA' else 0
scores[i].append(score)
if score > 90:
ninety_percents[i][region_code] += 1
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Consolidating data}
\begin{lstlisting}
subj_total = []
for subject in ninety_percents:
subj_total.append(sum(
subject.values()))
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Pie charts}
\begin{lstlisting}
figure(2)
pie(subj_total, labels=['English',
'Hindi', 'Maths', 'Science',
'Social'])
title('Students scoring more than
90% by subject(All regions
combined).')
savefig('/tmp/all_regions.png')
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Pie charts}
\includegraphics[height=3in, interpolate=true]{data/all_regions}
\end{frame}
\subsection{Obtaining statistics}
\begin{frame}[fragile]
\frametitle{Obtaining statistics}
\begin{block}{Statistics: Mean}
Obtain the mean of Math scores
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Obtaining statistics: Solution}
\begin{block}{Statistics: Mean}
Obtain the mean of Math scores
\end{block}
\begin{lstlisting}
math_scores = scores[2]
total = 0
for i, score in enumerate(math_scores):
total += score
mean = total / (i + 1)
print "Mean: ", mean
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Obtaining statistics: Another solution}
\begin{block}{Statistics: Mean}
Obtain the mean of Math scores
\end{block}
\begin{lstlisting}
math_scores = scores[2]
mean = sum(math_scores) /
len(math_scores)
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{NumPy arrays}
\begin{itemize}
\item NumPy provides arrays
\item arrays are very efficient and powerful
\item Very easy to perform element-wise operations - \typ{+, -, *, /, \%}
\begin{lstlisting}
In [1]: a = array([1, 2, 3])
In [2]: b = array([4, 5, 6])
In [3]: a + b
Out[3]: array([5, 7, 9])
\end{lstlisting}
\item Very easy to compute statistics
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Obtaining statistics}
\begin{lstlisting}
math_scores = array(scores[2])
print "Mean: ", mean(math_scores)
print "Median: ", median(math_scores)
print "Mode: ", stats.mode(math_scores)
print "Standard Deviation: ",
std(math_scores)
\end{lstlisting}
\inctime{15}
\end{frame}
\begin{frame}[fragile]
\frametitle{What tools did we use?}
\begin{itemize}
\item Dictionaries for storing data
\item Facilities for drawing pie charts
\item NumPy arrays for efficient array manipulations
\item Functions for statistical computations - mean, median, mode, standard deviation
\end{itemize}
\end{frame}
\section{Least square fit}
\begin{frame}
\frametitle{L vs $T^2$ \ldots}
Let's go back to the L vs $T^2$ plot
\begin{itemize}
\item We first look at obtaining $T^2$ from T
\item Then, we look at plotting a Least Squares fit
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Dealing with data whole-sale}
\begin{lstlisting}
In []: for t in T:
....: TSq.append(t*t)
\end{lstlisting}
\begin{itemize}
\item This is not very efficient
\item We are squaring element after element
\item We use arrays to make this efficient
\end{itemize}
\begin{lstlisting}
In []: L = array(L)
In []: T = array(T)
In []: TSq = T*T
\end{lstlisting}
\end{frame}
\end{document}