day1/session3.tex
changeset 276 4555c3814dd4
parent 268 f978ddc90960
child 281 ce818f645f6b
--- a/day1/session3.tex	Tue Nov 03 11:13:38 2009 +0530
+++ b/day1/session3.tex	Thu Nov 05 13:51:00 2009 +0530
@@ -527,115 +527,4 @@
 \end{lstlisting}
 \end{frame}
 
-\begin{frame}[fragile]
-\frametitle{Least Squares Fit}
-\vspace{-0.15in}
-\begin{figure}
-\includegraphics[width=4in]{data/L-Tsq-Line.png}
-\end{figure}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Least Squares Fit}
-\vspace{-0.15in}
-\begin{figure}
-\includegraphics[width=4in]{data/L-Tsq-points.png}
-\end{figure}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Least Squares Fit}
-\vspace{-0.15in}
-\begin{figure}
-\includegraphics[width=4in]{data/least-sq-fit.png}
-\end{figure}
-\end{frame}
-
-\begin{frame}
-\frametitle{Least Square Fit Curve}
-\begin{itemize}
-\item $T^2$ and $L$ have a linear relationship
-\item Hence, Least Square Fit Curve is a line
-\item we shall use the \typ{lstsq} function
-\end{itemize}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{\typ{lstsq}}
-\begin{itemize}
-\item We need to fit a line through points for the equation $T^2 = m \cdot L+c$
-\item The equation can be re-written as $T^2 = A \cdot p$
-\item where A is   
-  $\begin{bmatrix}
-  L_1 & 1 \\
-  L_2 & 1 \\
-  \vdots & \vdots\\
-  L_N & 1 \\
-  \end{bmatrix}$
-  and p is 
-  $\begin{bmatrix}
-  m\\
-  c\\
-  \end{bmatrix}$
-\item We need to find $p$ to plot the line
-\end{itemize}
-\end{frame}
-
-\subsection{Van der Monde matrix generation}
-\begin{frame}[fragile]
-\frametitle{Van der Monde Matrix}
-\begin{itemize}
-\item A is also called a Van der Monde matrix
-\item It can be generated using \typ{vander}
-\end{itemize}
-\begin{lstlisting}
-In []: A = vander(L, 2)
-\end{lstlisting}
-Gives the required Van der Monde matrix
-\begin{equation*}
-  \begin{bmatrix}
-    l_1 & 1 \\
-    l_2 & 1 \\
-    \vdots & \vdots\\
-    l_N & 1 \\
-  \end{bmatrix}
-\end{equation*}
-
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{\typ{lstsq} \ldots}
-\begin{itemize}
-\item Now use the \typ{lstsq} function
-\item Along with a lot of things, it returns the least squares solution
-\end{itemize}
-\begin{lstlisting}
-In []: coef, res, r, s = lstsq(A,TSq)
-\end{lstlisting}
-\end{frame}
-
-\subsection{Plotting}
-\begin{frame}[fragile]
-\frametitle{Least Square Fit Line \ldots}
-We get the points of the line from \typ{coef}
-\begin{lstlisting}
-In []: Tline = coef[0]*L + coef[1]
-\end{lstlisting}
-\begin{itemize}
-\item Now plot Tline vs. L, to get the Least squares fit line. 
-\end{itemize}
-\begin{lstlisting}
-In []: plot(L, Tline)
-\end{lstlisting}
-\end{frame}
-
-\begin{frame}[fragile]
-  \frametitle{What did we learn?}
-  \begin{itemize}
-   \item Least square fit
-   \item Van der Monde matrix generation
-   \item Plotting the least square fit curve
-  \end{itemize}
-\end{frame}
-
 \end{document}