--- a/day1/session3.tex Tue Nov 03 11:13:38 2009 +0530
+++ b/day1/session3.tex Thu Nov 05 13:51:00 2009 +0530
@@ -527,115 +527,4 @@
\end{lstlisting}
\end{frame}
-\begin{frame}[fragile]
-\frametitle{Least Squares Fit}
-\vspace{-0.15in}
-\begin{figure}
-\includegraphics[width=4in]{data/L-Tsq-Line.png}
-\end{figure}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Least Squares Fit}
-\vspace{-0.15in}
-\begin{figure}
-\includegraphics[width=4in]{data/L-Tsq-points.png}
-\end{figure}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Least Squares Fit}
-\vspace{-0.15in}
-\begin{figure}
-\includegraphics[width=4in]{data/least-sq-fit.png}
-\end{figure}
-\end{frame}
-
-\begin{frame}
-\frametitle{Least Square Fit Curve}
-\begin{itemize}
-\item $T^2$ and $L$ have a linear relationship
-\item Hence, Least Square Fit Curve is a line
-\item we shall use the \typ{lstsq} function
-\end{itemize}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{\typ{lstsq}}
-\begin{itemize}
-\item We need to fit a line through points for the equation $T^2 = m \cdot L+c$
-\item The equation can be re-written as $T^2 = A \cdot p$
-\item where A is
- $\begin{bmatrix}
- L_1 & 1 \\
- L_2 & 1 \\
- \vdots & \vdots\\
- L_N & 1 \\
- \end{bmatrix}$
- and p is
- $\begin{bmatrix}
- m\\
- c\\
- \end{bmatrix}$
-\item We need to find $p$ to plot the line
-\end{itemize}
-\end{frame}
-
-\subsection{Van der Monde matrix generation}
-\begin{frame}[fragile]
-\frametitle{Van der Monde Matrix}
-\begin{itemize}
-\item A is also called a Van der Monde matrix
-\item It can be generated using \typ{vander}
-\end{itemize}
-\begin{lstlisting}
-In []: A = vander(L, 2)
-\end{lstlisting}
-Gives the required Van der Monde matrix
-\begin{equation*}
- \begin{bmatrix}
- l_1 & 1 \\
- l_2 & 1 \\
- \vdots & \vdots\\
- l_N & 1 \\
- \end{bmatrix}
-\end{equation*}
-
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{\typ{lstsq} \ldots}
-\begin{itemize}
-\item Now use the \typ{lstsq} function
-\item Along with a lot of things, it returns the least squares solution
-\end{itemize}
-\begin{lstlisting}
-In []: coef, res, r, s = lstsq(A,TSq)
-\end{lstlisting}
-\end{frame}
-
-\subsection{Plotting}
-\begin{frame}[fragile]
-\frametitle{Least Square Fit Line \ldots}
-We get the points of the line from \typ{coef}
-\begin{lstlisting}
-In []: Tline = coef[0]*L + coef[1]
-\end{lstlisting}
-\begin{itemize}
-\item Now plot Tline vs. L, to get the Least squares fit line.
-\end{itemize}
-\begin{lstlisting}
-In []: plot(L, Tline)
-\end{lstlisting}
-\end{frame}
-
-\begin{frame}[fragile]
- \frametitle{What did we learn?}
- \begin{itemize}
- \item Least square fit
- \item Van der Monde matrix generation
- \item Plotting the least square fit curve
- \end{itemize}
-\end{frame}
-
\end{document}