472 \item Now plot Tline vs. L, to get the Least squares fit line. |
472 \item Now plot Tline vs. L, to get the Least squares fit line. |
473 \end{itemize} |
473 \end{itemize} |
474 \begin{lstlisting} |
474 \begin{lstlisting} |
475 In []: plot(L, Tline) |
475 In []: plot(L, Tline) |
476 \end{lstlisting} |
476 \end{lstlisting} |
477 \end{frame} |
|
478 |
|
479 \section{Solving linear equations} |
|
480 |
|
481 \begin{frame}[fragile] |
|
482 \frametitle{Solution of equations} |
|
483 Consider, |
|
484 \begin{align*} |
|
485 3x + 2y - z & = 1 \\ |
|
486 2x - 2y + 4z & = -2 \\ |
|
487 -x + \frac{1}{2}y -z & = 0 |
|
488 \end{align*} |
|
489 Solution: |
|
490 \begin{align*} |
|
491 x & = 1 \\ |
|
492 y & = -2 \\ |
|
493 z & = -2 |
|
494 \end{align*} |
|
495 \end{frame} |
|
496 |
|
497 \begin{frame}[fragile] |
|
498 \frametitle{Solving using Matrices} |
|
499 Let us now look at how to solve this using \kwrd{matrices} |
|
500 \begin{lstlisting} |
|
501 In []: A = array([[3,2,-1], |
|
502 [2,-2,4], |
|
503 [-1, 0.5, -1]]) |
|
504 In []: b = array([[1], [-2], [0]]) |
|
505 In []: x = solve(A, b) |
|
506 In []: Ax = dot(A,x) |
|
507 \end{lstlisting} |
|
508 \end{frame} |
|
509 |
|
510 \begin{frame}[fragile] |
|
511 \frametitle{Solution:} |
|
512 \begin{lstlisting} |
|
513 In []: x |
|
514 Out[]: |
|
515 array([[ 1.], |
|
516 [-2.], |
|
517 [-2.]]) |
|
518 \end{lstlisting} |
|
519 \end{frame} |
|
520 |
|
521 \begin{frame}[fragile] |
|
522 \frametitle{Let's check!} |
|
523 \begin{lstlisting} |
|
524 In []: Ax |
|
525 Out[]: |
|
526 array([[ 1.00000000e+00], |
|
527 [ -2.00000000e+00], |
|
528 [ 2.22044605e-16]]) |
|
529 \end{lstlisting} |
|
530 \begin{block}{} |
|
531 The last term in the matrix is actually \alert{0}!\\ |
|
532 We can use \kwrd{allclose()} to check. |
|
533 \end{block} |
|
534 \begin{lstlisting} |
|
535 In []: allclose(Ax, b) |
|
536 Out[]: True |
|
537 \end{lstlisting} |
|
538 \inctime{15} |
|
539 \end{frame} |
|
540 |
|
541 \subsection{Exercises} |
|
542 |
|
543 \begin{frame}[fragile] |
|
544 \frametitle{Problem 1} |
|
545 Given the matrix:\\ |
|
546 \begin{center} |
|
547 $\begin{bmatrix} |
|
548 -2 & 2 & 3\\ |
|
549 2 & 1 & 6\\ |
|
550 -1 &-2 & 0\\ |
|
551 \end{bmatrix}$ |
|
552 \end{center} |
|
553 Find: |
|
554 \begin{itemize} |
|
555 \item[i] Transpose |
|
556 \item[ii]Inverse |
|
557 \item[iii]Determinant |
|
558 \item[iv] Eigenvalues and Eigen vectors |
|
559 \item[v] Singular Value decomposition |
|
560 \end{itemize} |
|
561 \end{frame} |
|
562 |
|
563 \begin{frame}[fragile] |
|
564 \frametitle{Problem 2} |
|
565 Given |
|
566 \begin{center} |
|
567 A = |
|
568 $\begin{bmatrix} |
|
569 -3 & 1 & 5 \\ |
|
570 1 & 0 & -2 \\ |
|
571 5 & -2 & 4 \\ |
|
572 \end{bmatrix}$ |
|
573 , B = |
|
574 $\begin{bmatrix} |
|
575 0 & 9 & -12 \\ |
|
576 -9 & 0 & 20 \\ |
|
577 12 & -20 & 0 \\ |
|
578 \end{bmatrix}$ |
|
579 \end{center} |
|
580 Find: |
|
581 \begin{itemize} |
|
582 \item[i] Sum of A and B |
|
583 \item[ii]Elementwise Product of A and B |
|
584 \item[iii] Matrix product of A and B |
|
585 \end{itemize} |
|
586 \end{frame} |
|
587 |
|
588 \begin{frame}[fragile] |
|
589 \frametitle{Solution} |
|
590 Sum: |
|
591 $\begin{bmatrix} |
|
592 -3 & 10 & 7 \\ |
|
593 -8 & 0 & 18 \\ |
|
594 17 & -22 & 4 \\ |
|
595 \end{bmatrix}$ |
|
596 ,\\ Elementwise Product: |
|
597 $\begin{bmatrix} |
|
598 0 & 9 & -60 \\ |
|
599 -9 & 0 & -40 \\ |
|
600 60 & 40 & 0 \\ |
|
601 \end{bmatrix}$ |
|
602 ,\\ Matrix product: |
|
603 $\begin{bmatrix} |
|
604 51 & -127 & 56 \\ |
|
605 -24 & 49 & -12 \\ |
|
606 66 & -35 & -100 \\ |
|
607 \end{bmatrix}$ |
|
608 \end{frame} |
|
609 |
|
610 \begin{frame}[fragile] |
|
611 \frametitle{Problem 3} |
|
612 Solve the set of equations: |
|
613 \begin{align*} |
|
614 x + y + 2z -w & = 3\\ |
|
615 2x + 5y - z - 9w & = -3\\ |
|
616 2x + y -z + 3w & = -11 \\ |
|
617 x - 3y + 2z + 7w & = -5\\ |
|
618 \end{align*} |
|
619 \inctime{10} |
|
620 \end{frame} |
|
621 |
|
622 \begin{frame}[fragile] |
|
623 \frametitle{Solution} |
|
624 Use \kwrd{solve()} |
|
625 \begin{align*} |
|
626 x & = -5\\ |
|
627 y & = 2\\ |
|
628 z & = 3\\ |
|
629 w & = 0\\ |
|
630 \end{align*} |
|
631 \end{frame} |
477 \end{frame} |
632 |
478 |
633 \section{Summary} |
479 \section{Summary} |
634 \begin{frame} |
480 \begin{frame} |
635 \frametitle{What did we learn??} |
481 \frametitle{What did we learn??} |