|
1 \documentclass[12pt]{article} |
|
2 \title{Python Workshop\\Problems and Exercises} |
|
3 \author{Asokan Pichai\\Prabhu Ramachandran} |
|
4 \begin{document} |
|
5 \maketitle |
|
6 |
|
7 \section{Python} |
|
8 \subsection{Getting started} |
|
9 \begin{verbatim} |
|
10 >>> print 'Hello Python' |
|
11 >>> print 3124 * 126789 |
|
12 >>> 1786 % 12 |
|
13 >>> 3124 * 126789 |
|
14 >>> a = 3124 * 126789 |
|
15 >>> big = 12345678901234567890 ** 3 |
|
16 >>> verybig = big * big * big * big |
|
17 >>> 12345**6, 12345**67, 12345**678 |
|
18 |
|
19 >>> s = 'Hello ' |
|
20 >>> p = 'World' |
|
21 >>> s + p |
|
22 >>> s * 12 |
|
23 >>> s * s |
|
24 >>> s + p * 12, (s + p)* 12 |
|
25 >>> s * 12 + p * 12 |
|
26 >>> 12 * s |
|
27 \end{verbatim} |
|
28 \newpage |
|
29 |
|
30 \begin{verbatim} |
|
31 >>> 17/2 |
|
32 >>> 17/2.0 |
|
33 >>> 17.0/2 |
|
34 >>> 17.0/8.5 |
|
35 >>> int(17/2.0) |
|
36 >>> float(17/2) |
|
37 >>> str(17/2.0) |
|
38 >>> round( 7.5 ) |
|
39 \end{verbatim} |
|
40 |
|
41 \subsection{Mini exercises} |
|
42 \begin{itemize} |
|
43 \item Round a float to the nearest integer, using \texttt{int()}? |
|
44 \item What does this do? \\\texttt{round(amount * 10) /10.0 } |
|
45 \item How to round a number to the nearest 5 paise? |
|
46 \begin{description} |
|
47 \item[Remember] 17.23 $\rightarrow$ 17.25,\\ while 17.22 $\rightarrow$ 17.20 |
|
48 \end{description} |
|
49 \item How to round a number to the nearest 20 paise? |
|
50 \end{itemize} |
|
51 |
|
52 \begin{verbatim} |
|
53 amount = 12.68 |
|
54 denom = 0.05 |
|
55 nCoins = round(amount/denom) |
|
56 rAmount = nCoins * denom |
|
57 \end{verbatim} |
|
58 |
|
59 \subsection{Dynamic typing} |
|
60 \begin{verbatim} |
|
61 a = 1 |
|
62 a = 1.1 |
|
63 a = "Now I am a string!" |
|
64 \end{verbatim} |
|
65 |
|
66 \subsection{Comments} |
|
67 \begin{verbatim} |
|
68 a = 1 # In-line comments |
|
69 # Comment in a line to itself. |
|
70 a = "# This is not a comment!" |
|
71 \end{verbatim} |
|
72 |
|
73 \section{Data types} |
|
74 \subsection{Numbers} |
|
75 \begin{verbatim} |
|
76 >>> a = 1 # Int. |
|
77 >>> l = 1000000L # Long |
|
78 >>> e = 1.01325e5 # float |
|
79 >>> f = 3.14159 # float |
|
80 >>> c = 1+1j # Complex! |
|
81 >>> print f*c/a |
|
82 (3.14159+3.14159j) |
|
83 >>> print c.real, c.imag |
|
84 1.0 1.0 |
|
85 >>> abs(c) |
|
86 1.4142135623730951 |
|
87 >>> abs( 8 - 9.5 ) |
|
88 1.5 |
|
89 \end{verbatim} |
|
90 |
|
91 \subsection{Boolean} |
|
92 \begin{verbatim} |
|
93 >>> t = True |
|
94 >>> f = not t |
|
95 False |
|
96 >>> f or t |
|
97 True |
|
98 >>> f and t |
|
99 False |
|
100 >>> NOT True |
|
101 \ldots ??? |
|
102 >>> not TRUE |
|
103 \ldots ??? |
|
104 \end{verbatim} |
|
105 |
|
106 \subsection{Relational and logical operators} |
|
107 \begin{verbatim} |
|
108 >>> a, b, c = -1, 0, 1 |
|
109 >>> a == b |
|
110 False |
|
111 >>> a <= b |
|
112 True |
|
113 >>> a + b != c |
|
114 True |
|
115 >>> a < b < c |
|
116 True |
|
117 >>> c >= a + b |
|
118 True |
|
119 \end{verbatim} |
|
120 |
|
121 \subsection{Strings} |
|
122 \begin{verbatim} |
|
123 s = 'this is a string' |
|
124 s = 'This one has "quotes" inside!' |
|
125 s = "I have 'single-quotes' inside!" |
|
126 l = "A string spanning many lines\ |
|
127 one more line\ |
|
128 yet another" |
|
129 t = """A triple quoted string does |
|
130 not need to be escaped at the end and |
|
131 "can have nested quotes" etc.""" |
|
132 \end{verbatim} |
|
133 |
|
134 \begin{verbatim} |
|
135 >>> w = "hello" |
|
136 >>> print w[0] + w[2] + w[-1] |
|
137 hlo |
|
138 >>> len(w) # guess what |
|
139 5 |
|
140 >>> s = u'Unicode strings!' |
|
141 >>> # Raw strings (note the leading 'r') |
|
142 ... r_s = r'A string $\alpha \nu$' |
|
143 \end{verbatim} |
|
144 \begin{verbatim} |
|
145 >>> w[0] = 'H' # Can't do that! |
|
146 Traceback (most recent call last): |
|
147 File "<stdin>", line 1, in ? |
|
148 TypeError: object does not support item assignment |
|
149 \end{verbatim} |
|
150 |
|
151 \subsection{IPython} |
|
152 \begin{verbatim} |
|
153 In [1]: a = 'hello world' |
|
154 In [2]: a.startswith('hell') |
|
155 Out[2]: True |
|
156 In [3]: a.endswith('ld') |
|
157 Out[3]: True |
|
158 In [4]: a.upper() |
|
159 Out[4]: 'HELLO WORLD' |
|
160 In [5]: a.upper().lower() |
|
161 Out[5]: 'hello world' |
|
162 |
|
163 In [6]: a.split() |
|
164 Out[6]: ['hello', 'world'] |
|
165 In [7]: ''.join(['a', 'b', 'c']) |
|
166 Out[7]: 'abc' |
|
167 In [8] 'd' in ''.join( 'a', 'b', 'c') |
|
168 Out[8]: False |
|
169 a.split( 'o' )} |
|
170 ??? |
|
171 'x'.join( a.split( 'o' ) ) |
|
172 ??? |
|
173 |
|
174 In [11]: x, y = 1, 1.2 |
|
175 In [12]: 'x is %s, y is %s' %(x, y) |
|
176 Out[12]: 'x is 1, y is 1.234' |
|
177 |
|
178 'x is \%d, y is \%f' \%(x, y) |
|
179 ??? |
|
180 'x is \%3d, y is \%4.2f' \%(x, y) |
|
181 ??? |
|
182 \end{verbatim} |
|
183 |
|
184 \subsection{A classic problem} |
|
185 How to interchange values of two variables? Please note that the type of either variable is unknown and it is not necessary that both be of the same type even! |
|
186 |
|
187 \subsection{Basic conditional flow} |
|
188 \begin{verbatim} |
|
189 In [21]: a = 7 |
|
190 In [22]: b = 8 |
|
191 In [23]: if a > b: |
|
192 ....: print 'Hello' |
|
193 ....: else: |
|
194 ....: print 'World' |
|
195 ....: |
|
196 ....: |
|
197 World |
|
198 \end{verbatim} |
|
199 |
|
200 \subsection{\texttt{If...elif...else} example} |
|
201 \begin{verbatim} |
|
202 x = int(raw_input("Enter an integer:")) |
|
203 if x < 0: |
|
204 print 'Be positive!' |
|
205 elif x == 0: |
|
206 print 'Zero' |
|
207 elif x == 1: |
|
208 print 'Single' |
|
209 else: |
|
210 print 'More' |
|
211 \end{verbatim} |
|
212 |
|
213 \subsection{Basic looping} |
|
214 \begin{verbatim} |
|
215 # Fibonacci series: |
|
216 # the sum of two elements |
|
217 # defines the next |
|
218 a, b = 0, 1 |
|
219 while b < 10: |
|
220 print b, |
|
221 a, b = b, a + b |
|
222 |
|
223 \end{verbatim} |
|
224 |
|
225 \section{Problem set 1} |
|
226 All the problems can be solved using \texttt{if} and \texttt{while} |
|
227 \begin{description} |
|
228 \item[1.1] Write a program that displays all three digit numbers that are equal to the sum of the cubes of their digits. That is, print numbers $abc$ that have the property $abc = a^3 + b^3 + c^3$\\ |
|
229 These are called $Armstrong$ numbers. |
|
230 |
|
231 \item[1.2 Collatz sequence] |
|
232 \begin{enumerate} |
|
233 \item Start with an arbitrary (positive) integer. |
|
234 \item If the number is even, divide by 2; if the number is odd multiply by 3 and add 1. |
|
235 \item Repeat the procedure with the new number. |
|
236 \item There is a cycle of 4, 2, 1 at which the procedure loops. |
|
237 \end{enumerate} |
|
238 Write a program that accepts the starting value and prints out the Collatz sequence. |
|
239 |
|
240 \item[1.3 Kaprekar's constant] |
|
241 \begin{enumerate} |
|
242 \item Take a four digit number--with at least two digits different. |
|
243 \item Arrange the digits in ascending and descending order, giving A and D respectively. |
|
244 \item Leave leading zeros in A! |
|
245 \item Subtract A from D. |
|
246 \item With the result, repeat from step 2. |
|
247 \end{enumerate} |
|
248 Write a program to accept a 4-digit number and display the progression to Kaprekar's constant. |
|
249 |
|
250 \item[1.4] |
|
251 Write a program that prints the following pyramid on the screen. |
|
252 \begin{verbatim} |
|
253 1 |
|
254 2 2 |
|
255 3 3 3 |
|
256 4 4 4 4 |
|
257 \end{verbatim} |
|
258 The number of lines must be obtained from the user as input.\\ |
|
259 When can your code fail? |
|
260 \end{description} |
|
261 |
|
262 \subsection{Functions: examples} |
|
263 \begin{verbatim} |
|
264 def signum( r ): |
|
265 """returns 0 if r is zero |
|
266 -1 if r is negative |
|
267 +1 if r is positive""" |
|
268 if r < 0: |
|
269 return -1 |
|
270 elif r > 0: |
|
271 return 1 |
|
272 else: |
|
273 return 0 |
|
274 |
|
275 def pad( n, size ): |
|
276 """pads integer n with spaces |
|
277 into a string of length size |
|
278 """ |
|
279 SPACE = ' ' |
|
280 s = str( n ) |
|
281 padSize = size - len( s ) |
|
282 return padSize * SPACE + s |
|
283 \end{verbatim} |
|
284 What about \%3d? |
|
285 |
|
286 \subsection {What does this function do?} |
|
287 \begin{verbatim} |
|
288 def what( n ): |
|
289 if n < 0: n = -n |
|
290 while n > 0: |
|
291 if n % 2 == 1: |
|
292 return False |
|
293 n /= 10 |
|
294 return True |
|
295 \end{verbatim} |
|
296 \newpage |
|
297 |
|
298 \subsection{What does this function do?} |
|
299 \begin{verbatim} |
|
300 def what( n ): |
|
301 i = 1 |
|
302 while i * i < n: |
|
303 i += 1 |
|
304 return i * i == n, i |
|
305 \end{verbatim} |
|
306 |
|
307 \subsection{What does this function do?} |
|
308 \begin{verbatim} |
|
309 def what( n, x ): |
|
310 z = 1.0 |
|
311 if n < 0: |
|
312 x = 1.0 / x |
|
313 n = -n |
|
314 while n > 0: |
|
315 if n % 2 == 1: |
|
316 z *= x |
|
317 n /= 2 |
|
318 x *= x |
|
319 return z |
|
320 \end{verbatim} |
|
321 |
|
322 \section{Problem set 2} |
|
323 The focus is on writing functions and calling them. |
|
324 \begin{description} |
|
325 \item[2.1] Write a function to return the gcd of two numbers. |
|
326 \item[2.2 Primitive Pythagorean Triads] A pythagorean triad $(a,b,c)$ has the property $a^2 + b^2 = c^2$.\\By primitive we mean triads that do not `depend' on others. For example, (4,3,5) is a variant of (3,4,5) and hence is not primitive. And (10,24,26) is easily derived from (5,12,13) and should not be displayed by our program. \\ |
|
327 Write a program to print primitive pythagorean triads. The program should generate all triads with a, b values in the range 0---100 |
|
328 \item[2.3] Write a program that generates a list of all four digit numbers that have all their digits even and are perfect squares.\\For example, the output should include 6400 but not 8100 (one digit is odd) or 4248 (not a perfect square). |
|
329 \item[2.4 Aliquot] The aliquot of a number is defined as: the sum of the \emph{proper} divisors of the number. For example, the aliquot(12) = 1 + 2 + 3 + 4 + 6 = 16.\\ |
|
330 Write a function that returns the aliquot number of a given number. |
|
331 \item[2.5 Amicable pairs] A pair of numbers (a, b) is said to be \emph{amicable} if the aliquot number of a is b and the aliquot number of b is a.\\ |
|
332 Example: \texttt{220, 284}\\ |
|
333 Write a program that prints all five digit amicable pairs. |
|
334 \end{description} |
|
335 |
|
336 \section{Lists} |
|
337 \subsection{List creation and indexing} |
|
338 \begin{verbatim} |
|
339 >>> a = [] # An empty list. |
|
340 >>> a = [1, 2, 3, 4] # More useful. |
|
341 >>> len(a) |
|
342 4 |
|
343 >>> a[0] + a[1] + a[2] + a[-1] |
|
344 10 |
|
345 \end{verbatim} |
|
346 |
|
347 \begin{verbatim} |
|
348 >>> a[1:3] # A slice. |
|
349 [2, 3] |
|
350 >>> a[1:-1] |
|
351 [2, 3, 4] |
|
352 >>> a[1:] == a[1:-1] |
|
353 False |
|
354 \end{verbatim} |
|
355 Explain last result |
|
356 |
|
357 \newpage |
|
358 \subsection{List: more slices} |
|
359 \begin{verbatim} |
|
360 >>> a[0:-1:2] # Notice the step! |
|
361 [1, 3] |
|
362 >>> a[::2] |
|
363 [1, 3] |
|
364 >>> a[-1::-1] |
|
365 \end{verbatim} |
|
366 What do you think the last one will do?\\ |
|
367 \emph{Note: Strings also use same indexing and slicing.} |
|
368 \subsection{List: examples} |
|
369 \begin{verbatim} |
|
370 >>> a = [1, 2, 3, 4] |
|
371 >>> a[:2] |
|
372 [1, 3] |
|
373 >>> a[0:-1:2] |
|
374 [1, 3] |
|
375 \end{verbatim} |
|
376 \emph{Lists are mutable (unlike strings)} |
|
377 |
|
378 \begin{verbatim} |
|
379 >>> a[1] = 20 |
|
380 >>> a |
|
381 [1, 20, 3, 4] |
|
382 \end{verbatim} |
|
383 |
|
384 \subsection{Lists are mutable and heterogenous} |
|
385 \begin{verbatim} |
|
386 >>> a = ['spam', 'eggs', 100, 1234] |
|
387 >>> a[2] = a[2] + 23 |
|
388 >>> a |
|
389 ['spam', 'eggs', 123, 1234] |
|
390 >>> a[0:2] = [1, 12] # Replace items |
|
391 >>> a |
|
392 [1, 12, 123, 1234] |
|
393 >>> a[0:2] = [] # Remove items |
|
394 >>> a.append( 12345 ) |
|
395 >>> a |
|
396 [123, 1234, 12345] |
|
397 \end{verbatim} |
|
398 |
|
399 \subsection{List methods} |
|
400 \begin{verbatim} |
|
401 >>> a = ['spam', 'eggs', 1, 12] |
|
402 >>> a.reverse() # in situ |
|
403 >>> a |
|
404 [12, 1, 'eggs', 'spam'] |
|
405 >>> a.append(['x', 1]) |
|
406 >>> a |
|
407 [12, 1, 'eggs', 'spam', ['x', 1]] |
|
408 >>> a.extend([1,2]) # Extend the list. |
|
409 >>> a.remove( 'spam' ) |
|
410 >>> a |
|
411 [12, 1, 'eggs', ['x', 1], 1, 2] |
|
412 \end{verbatim} |
|
413 |
|
414 \subsection{List containership} |
|
415 \begin{verbatim} |
|
416 >>> a = ['cat', 'dog', 'rat', 'croc'] |
|
417 >>> 'dog' in a |
|
418 True |
|
419 >>> 'snake' in a |
|
420 False |
|
421 >>> 'snake' not in a |
|
422 True |
|
423 >>> 'ell' in 'hello world' |
|
424 True |
|
425 \end{verbatim} |
|
426 \subsection{Tuples: immutable} |
|
427 \begin{verbatim} |
|
428 >>> t = (0, 1, 2) |
|
429 >>> print t[0], t[1], t[2], t[-1] |
|
430 0 1 2 2 |
|
431 >>> t[0] = 1 |
|
432 Traceback (most recent call last): |
|
433 File "<stdin>", line 1, in ? |
|
434 TypeError: object does not support item assignment |
|
435 \end{verbatim} |
|
436 Multiple return values are actually a tuple.\\ |
|
437 Exchange is tuple (un)packing |
|
438 \subsection{\texttt{range()} function} |
|
439 \begin{verbatim} |
|
440 >>> range(7) |
|
441 [0, 1, 2, 3, 4, 5, 6] |
|
442 >>> range( 3, 9) |
|
443 [3, 4, 5, 6, 7, 8] |
|
444 >>> range( 4, 17, 3) |
|
445 [4, 7, 10, 13, 16] |
|
446 >>> range( 5, 1, -1) |
|
447 [5, 4, 3, 2] |
|
448 >>> range( 8, 12, -1) |
|
449 [] |
|
450 \end{verbatim} |
|
451 |
|
452 \subsection{\texttt{for\ldots range(\ldots)} idiom} |
|
453 \begin{verbatim} |
|
454 In [83]: for i in range(5): |
|
455 ....: print i, i * i |
|
456 ....: |
|
457 ....: |
|
458 0 0 |
|
459 1 1 |
|
460 2 4 |
|
461 3 9 |
|
462 4 16 |
|
463 \end{verbatim} |
|
464 |
|
465 \subsection{\texttt{for}: the list companion} |
|
466 |
|
467 \begin{verbatim} |
|
468 In [84]: a = ['a', 'b', 'c'] |
|
469 In [85]: for x in a: |
|
470 ....: print x, chr( ord(x) + 10 ) |
|
471 ....: |
|
472 a k |
|
473 b l |
|
474 c m |
|
475 \end{verbatim} |
|
476 |
|
477 \subsection{\texttt{for}: the list companion} |
|
478 \begin{verbatim} |
|
479 In [89]: for p, ch in enumerate( a ): |
|
480 ....: print p, ch |
|
481 ....: |
|
482 ....: |
|
483 0 a |
|
484 1 b |
|
485 2 c |
|
486 \end{verbatim} |
|
487 Try: \texttt{print enumerate(a)} |
|
488 |
|
489 \section{Problem set 3} |
|
490 As you can guess, idea is to use \texttt{for}! |
|
491 |
|
492 \begin{description} |
|
493 \item[3.1] Which of the earlier problems is simpler when we use \texttt{for} instead of \texttt{while}? |
|
494 \item[3.2] Given an empty chessboard and one Bishop placed in any square, say (r, c), generate the list of all squares the Bishop could move to. |
|
495 \item[3.3] Given two real numbers \texttt{a, b}, and an integer \texttt{N}, write a |
|
496 function named \texttt{linspace( a, b, N)} that returns an ordered list |
|
497 of \texttt{N} points starting with \texttt{a} and ending in \texttt{b} and |
|
498 equally spaced.\\ |
|
499 For example, \texttt{linspace(0, 5, 11)}, should return, \\ |
|
500 \begin{verbatim} |
|
501 [ 0.0 , 0.5, 1.0 , 1.5, 2.0 , 2.5, |
|
502 3.0 , 3.5, 4.0 , 4.5, 5.0 ] |
|
503 \end{verbatim} |
|
504 \item[3.4a] Use the \texttt{linspace} function and generate a list of N tuples of the form\\ |
|
505 \texttt{[($x_1$,f($x_1$)),($x_2$,f($x_2$)),\ldots,($x_N$,f($x_N$))]}\\for the following functions, |
|
506 \begin{itemize} |
|
507 \item \texttt{f(x) = sin(x)} |
|
508 \item \texttt{f(x) = sin(x) + sin(10*x)}. |
|
509 \end{itemize} |
|
510 |
|
511 \item[3.4b] Using the tuples generated earlier, determine the intervals where the roots of the functions lie. |
|
512 \end{description} |
|
513 |
|
514 \section{IO} |
|
515 \subsection{Simple tokenizing and parsing} |
|
516 \begin{verbatim} |
|
517 s = """The quick brown fox jumped |
|
518 over the lazy dog""" |
|
519 for word in s.split(): |
|
520 print word.capitalize() |
|
521 \end{verbatim} |
|
522 |
|
523 \begin{description} |
|
524 \item[4.1] Given a string like, ``1, 3-7, 12, 15, 18-21'', produce the list \texttt{[1,3,4,5,6,7,12,15,18,19,20,21]} |
|
525 \end{description} |
|
526 |
|
527 \subsection{File handling} |
|
528 \begin{verbatim} |
|
529 >>> f = open('/path/to/file_name') |
|
530 >>> data = f.read() # Read entire file. |
|
531 >>> line = f.readline() # Read one line. |
|
532 >>> f.close() # close the file. |
|
533 \end{verbatim} |
|
534 Writing files |
|
535 \begin{verbatim} |
|
536 >>> f = open('/path/to/file_name', 'w') |
|
537 >>> f.write('hello world\n') |
|
538 >>> f.close() |
|
539 \end{verbatim} |
|
540 |
|
541 \subsection{File and \texttt{for}} |
|
542 \begin{verbatim} |
|
543 >>> f = open('/path/to/file_name') |
|
544 >>> for line in f: |
|
545 ... print line |
|
546 ... |
|
547 \end{verbatim} |
|
548 |
|
549 \begin{description} |
|
550 \item[4.2] The given file has lakhs of records in the form: |
|
551 \texttt{RGN;ID;NAME;MARK1;\ldots;MARK5;TOTAL;PFW}. |
|
552 Some entries may be empty. Read the data from this file and print the |
|
553 name of the student with the maximum total marks. |
|
554 \item[4.3] For the same data file compute the average marks in different |
|
555 subjects, the student with the maximum mark in each subject and also |
|
556 the standard deviation of the marks. Do this efficiently. |
|
557 \end{description} |
|
558 |
|
559 \section{Modules} |
|
560 \begin{verbatim} |
|
561 >>> sqrt(2) |
|
562 Traceback (most recent call last): |
|
563 File "<stdin>", line 1, in <module> |
|
564 NameError: name 'sqrt' is not defined |
|
565 >>> import math |
|
566 >>> math.sqrt(2) |
|
567 1.4142135623730951 |
|
568 |
|
569 >>> from math import sqrt |
|
570 >>> from math import * |
|
571 >>> from os.path import exists |
|
572 \end{verbatim} |
|
573 |
|
574 \subsection{Modules: example} |
|
575 \begin{verbatim} |
|
576 # --- arith.py --- |
|
577 def gcd(a, b): |
|
578 if a%b == 0: return b |
|
579 return gcd(b, a%b) |
|
580 def lcm(a, b): |
|
581 return a*b/gcd(a, b) |
|
582 # ------------------ |
|
583 >>> import arith |
|
584 >>> arith.gcd(26, 65) |
|
585 13 |
|
586 >>> arith.lcm(26, 65) |
|
587 130 |
|
588 \end{verbatim} |
|
589 |
|
590 \begin{description} |
|
591 \item[5.1] Put all the functions you have written so far as part of the problems |
|
592 into one module called \texttt{iitb.py} and use this module from IPython. |
|
593 \end{description} |
|
594 \end{document} |