circulate/sslc_allreg.py
changeset 358 162e3e453920
child 359 cb17c87b090e
equal deleted inserted replaced
355:6af6441034f9 358:162e3e453920
       
     1 scores = [[], [], [], [], []]
       
     2 ninety_percents = [{}, {}, {}, {}, {}]
       
     3 
       
     4 for record in open('sslc1.txt'):
       
     5     record = record.strip()
       
     6     fields = record.split(';')
       
     7 
       
     8     region_code = fields[0].strip()
       
     9    
       
    10     for i, field in enumerate(fields[3:8]):
       
    11         if region_code not in ninety_percents[i]:
       
    12             ninety_percents[i][region_code] = 0
       
    13         score_str = field.strip()
       
    14         score = 0 if score_str == 'AA' else int(score_str)
       
    15         scores[i].append(score)
       
    16         if score > 90:
       
    17             ninety_percents[i][region_code] += 1
       
    18 
       
    19 subj_total = []
       
    20 for subject in ninety_percents:
       
    21     subj_total.append(sum(subject.values()))
       
    22 
       
    23 
       
    24 figure(1)
       
    25 pie(ninety_percents[3].values(), labels=ninety_percents[3].keys())
       
    26 title('Students scoring 90% and above in science by region')
       
    27 savefig('science.png')
       
    28 
       
    29 figure(2)
       
    30 pie(subj_total, labels=['English', 'Hindi', 'Maths', 'Science', 'Social'])
       
    31 title('Students scoring more than 90% by subject(All regions combined).')
       
    32 savefig('all_regions.png')
       
    33 
       
    34 # List method
       
    35 print "Mean: ", mean(scores[2])
       
    36 
       
    37 print "Median: ", median(scores[2])
       
    38 
       
    39 print "Standard Deviation: ", std(scores[2])
       
    40 
       
    41 # Array method
       
    42 
       
    43 #math_scores = array(scores[2])
       
    44 
       
    45 #print "Mean: ", mean(math_scores)
       
    46 
       
    47 #print "Median: ", median(math_scores)
       
    48 
       
    49 #print "Standard Deviation: ", std(math_scores)
       
    50