day1/handout.tex
changeset 62 12bd6784d213
child 70 b138c4ac68e6
equal deleted inserted replaced
61:fc495fd7e84e 62:12bd6784d213
       
     1 \documentclass[12pt]{article}
       
     2 \title{Python Workshop\\Problems and Exercises}
       
     3 \author{Asokan Pichai\\Prabhu Ramachandran}
       
     4 \begin{document}
       
     5 \maketitle
       
     6 
       
     7 \section{Python}
       
     8 \subsection{Getting started}
       
     9    \begin{verbatim}
       
    10 >>> print 'Hello Python' 
       
    11 >>> print 3124 * 126789
       
    12 >>> 1786 % 12
       
    13 >>> 3124 * 126789
       
    14 >>> a = 3124 * 126789
       
    15 >>> big = 12345678901234567890 ** 3
       
    16 >>> verybig = big * big * big * big 
       
    17 >>> 12345**6, 12345**67, 12345**678
       
    18 
       
    19 >>> s = 'Hello '
       
    20 >>> p = 'World'
       
    21 >>> s + p 
       
    22 >>> s * 12 
       
    23 >>> s * s
       
    24 >>> s + p * 12, (s + p)* 12
       
    25 >>> s * 12 + p * 12
       
    26 >>> 12 * s 
       
    27 \end{verbatim}
       
    28 \newpage
       
    29 
       
    30 \begin{verbatim}
       
    31 >>> 17/2
       
    32 >>> 17/2.0
       
    33 >>> 17.0/2
       
    34 >>> 17.0/8.5
       
    35 >>> int(17/2.0)
       
    36 >>> float(17/2)
       
    37 >>> str(17/2.0)
       
    38 >>> round( 7.5 )
       
    39 \end{verbatim}
       
    40   
       
    41 \subsection{Mini exercises}
       
    42 \begin{itemize}
       
    43   \item Round a float to the nearest integer, using \texttt{int()}?
       
    44   \item What does this do?  \\\texttt{round(amount * 10) /10.0 }
       
    45   \item How to round a number to the nearest  5 paise?
       
    46     \begin{description}
       
    47       \item[Remember] 17.23 $\rightarrow$ 17.25,\\ while 17.22 $\rightarrow$ 17.20
       
    48     \end{description}
       
    49   \item How to round a number to the nearest 20 paise?
       
    50 \end{itemize}
       
    51 
       
    52 \begin{verbatim}
       
    53     amount = 12.68
       
    54     denom = 0.05
       
    55     nCoins = round(amount/denom)
       
    56     rAmount = nCoins * denom
       
    57 \end{verbatim}
       
    58 
       
    59 \subsection{Dynamic typing}
       
    60 \begin{verbatim}
       
    61 a = 1
       
    62 a = 1.1
       
    63 a = "Now I am a string!"
       
    64 \end{verbatim}
       
    65 
       
    66 \subsection{Comments}
       
    67 \begin{verbatim}
       
    68 a = 1  # In-line comments
       
    69 # Comment in a line to itself.
       
    70 a = "# This is not a comment!"
       
    71   \end{verbatim}
       
    72 
       
    73 \section{Data types}
       
    74 \subsection{Numbers}
       
    75   \begin{verbatim}
       
    76 >>> a = 1 # Int.
       
    77 >>> l = 1000000L # Long
       
    78 >>> e = 1.01325e5 # float
       
    79 >>> f = 3.14159 # float
       
    80 >>> c = 1+1j # Complex!
       
    81 >>> print f*c/a
       
    82 (3.14159+3.14159j)
       
    83 >>> print c.real, c.imag
       
    84 1.0 1.0
       
    85 >>> abs(c)
       
    86 1.4142135623730951
       
    87 >>> abs( 8 - 9.5 )
       
    88 1.5
       
    89   \end{verbatim}
       
    90 
       
    91 \subsection{Boolean}
       
    92   \begin{verbatim}
       
    93 >>> t = True
       
    94 >>> f = not t
       
    95 False
       
    96 >>> f or t
       
    97 True
       
    98 >>> f and t
       
    99 False
       
   100 >>>  NOT True
       
   101 \ldots ???
       
   102 >>>  not TRUE
       
   103 \ldots ???
       
   104 \end{verbatim}
       
   105 
       
   106 \subsection{Relational and logical operators}
       
   107   \begin{verbatim}
       
   108 >>> a, b, c = -1, 0, 1
       
   109 >>> a == b
       
   110 False
       
   111 >>> a <= b 
       
   112 True
       
   113 >>> a + b != c
       
   114 True
       
   115 >>> a < b < c
       
   116 True
       
   117 >>> c >= a + b
       
   118 True
       
   119   \end{verbatim}
       
   120 
       
   121 \subsection{Strings}
       
   122   \begin{verbatim}
       
   123 s = 'this is a string'
       
   124 s = 'This one has "quotes" inside!'
       
   125 s = "I have 'single-quotes' inside!"
       
   126 l = "A string spanning many lines\
       
   127 one more line\
       
   128 yet another"
       
   129 t = """A triple quoted string does
       
   130 not need to be escaped at the end and 
       
   131 "can have nested quotes" etc."""
       
   132   \end{verbatim}
       
   133 
       
   134   \begin{verbatim}
       
   135 >>> w = "hello"    
       
   136 >>> print w[0] + w[2] + w[-1]
       
   137 hlo
       
   138 >>> len(w) # guess what
       
   139 5
       
   140 >>> s = u'Unicode strings!'
       
   141 >>> # Raw strings (note the leading 'r')
       
   142 ... r_s = r'A string $\alpha \nu$'
       
   143   \end{verbatim}
       
   144   \begin{verbatim}
       
   145 >>> w[0] = 'H' # Can't do that!
       
   146 Traceback (most recent call last):
       
   147   File "<stdin>", line 1, in ?
       
   148 TypeError: object does not support item assignment
       
   149   \end{verbatim}
       
   150 
       
   151   \subsection{IPython}
       
   152   \begin{verbatim}
       
   153 In [1]: a = 'hello world'
       
   154 In [2]: a.startswith('hell')
       
   155 Out[2]: True
       
   156 In [3]: a.endswith('ld')
       
   157 Out[3]: True
       
   158 In [4]: a.upper()
       
   159 Out[4]: 'HELLO WORLD'
       
   160 In [5]: a.upper().lower()
       
   161 Out[5]: 'hello world'
       
   162 
       
   163 In [6]: a.split()
       
   164 Out[6]: ['hello', 'world']
       
   165 In [7]: ''.join(['a', 'b', 'c'])
       
   166 Out[7]: 'abc'
       
   167 In [8] 'd' in ''.join( 'a', 'b', 'c')
       
   168 Out[8]: False
       
   169 a.split( 'o' )}
       
   170 ???
       
   171 'x'.join( a.split( 'o' ) )
       
   172 ???
       
   173 
       
   174 In [11]: x, y = 1, 1.2
       
   175 In [12]: 'x is %s, y is %s' %(x, y)
       
   176 Out[12]: 'x is 1, y is 1.234'
       
   177 
       
   178 'x is \%d, y is \%f' \%(x, y)
       
   179 ???
       
   180 'x is \%3d, y is \%4.2f' \%(x, y)
       
   181 ??? 
       
   182   \end{verbatim}
       
   183 
       
   184 \subsection{A classic problem}
       
   185     How to interchange values of two variables? Please note that the type of either variable is unknown and it is not necessary that both be of the same type even!
       
   186 
       
   187 \subsection{Basic conditional flow}
       
   188   \begin{verbatim}
       
   189 In [21]: a = 7
       
   190 In [22]: b = 8
       
   191 In [23]: if a > b:
       
   192    ....:    print 'Hello'
       
   193    ....: else:
       
   194    ....:     print 'World'
       
   195    ....:
       
   196    ....:
       
   197 World
       
   198   \end{verbatim}
       
   199 
       
   200 \subsection{\texttt{If...elif...else} example}
       
   201 \begin{verbatim}
       
   202 x = int(raw_input("Enter an integer:"))
       
   203 if x < 0:
       
   204      print 'Be positive!'
       
   205 elif x == 0:
       
   206      print 'Zero'
       
   207 elif x == 1:
       
   208      print 'Single'
       
   209 else:
       
   210      print 'More'
       
   211 \end{verbatim}
       
   212 
       
   213 \subsection{Basic looping}
       
   214   \begin{verbatim}
       
   215 # Fibonacci series:
       
   216 # the sum of two elements
       
   217 # defines the next
       
   218 a, b = 0, 1
       
   219 while b < 10:
       
   220     print b,
       
   221     a, b = b, a + b
       
   222  
       
   223 \end{verbatim}
       
   224 
       
   225 \section{Problem set 1}
       
   226 All the problems can be solved using \texttt{if} and \texttt{while} 
       
   227 \begin{description}
       
   228   \item[1.1] Write a program that displays all three digit numbers that are equal to the sum of the cubes of their digits. That is, print numbers $abc$ that have the property $abc = a^3 + b^3 + c^3$\\
       
   229 These are called $Armstrong$ numbers.
       
   230   
       
   231 \item[1.2 Collatz sequence]
       
   232 \begin{enumerate}
       
   233   \item Start with an arbitrary (positive) integer. 
       
   234   \item If the number is even, divide by 2; if the number is odd multiply by 3 and add 1.
       
   235   \item Repeat the procedure with the new number.
       
   236   \item There is a cycle of 4, 2, 1 at which the procedure loops.
       
   237 \end{enumerate}
       
   238     Write a program that accepts the starting value and prints out the Collatz sequence.
       
   239 
       
   240 \item[1.3]
       
   241   Write a program that prints the following pyramid on the screen. 
       
   242   \begin{verbatim}
       
   243 1
       
   244 2  2
       
   245 3  3  3
       
   246 4  4  4  4
       
   247   \end{verbatim}
       
   248 The number of lines must be obtained from the user as input.\\
       
   249 When can your code fail?
       
   250 \end{description}
       
   251 
       
   252 \subsection{Functions: examples}
       
   253   \begin{verbatim}
       
   254 def signum( r ):
       
   255     """returns 0 if r is zero
       
   256     -1 if r is negative
       
   257     +1 if r is positive"""
       
   258     if r < 0:
       
   259         return -1
       
   260     elif r > 0:
       
   261         return 1
       
   262     else:
       
   263         return 0
       
   264 
       
   265 def pad( n, size ): 
       
   266     """pads integer n with spaces
       
   267     into a string of length size
       
   268     """
       
   269     SPACE = ' '
       
   270     s = str( n )
       
   271     padSize = size - len( s )
       
   272     return padSize * SPACE + s
       
   273   \end{verbatim}
       
   274 What about \%3d?
       
   275 
       
   276 \subsection  {What does this function do?}
       
   277   \begin{verbatim}
       
   278 def what( n ):
       
   279     if n < 0: n = -n
       
   280     while n > 0:
       
   281         if n % 2 == 1:
       
   282             return False
       
   283         n /= 10
       
   284     return True
       
   285   \end{verbatim}
       
   286 \newpage
       
   287 
       
   288 \subsection{What does this function do?}
       
   289 \begin{verbatim}
       
   290 def what( n ):
       
   291     i = 1    
       
   292     while i * i < n:
       
   293         i += 1
       
   294     return i * i == n, i
       
   295   \end{verbatim}
       
   296 
       
   297 \subsection{What does this function do?}
       
   298   \begin{verbatim}
       
   299 def what( n, x ):
       
   300     z = 1.0
       
   301     if n < 0:
       
   302         x = 1.0 / x
       
   303         n = -n
       
   304     while n > 0:
       
   305         if n % 2 == 1:
       
   306             z *= x
       
   307         n /= 2
       
   308         x *= x
       
   309     return z
       
   310   \end{verbatim}
       
   311 
       
   312 \section{Problem set 2}
       
   313   The focus is on writing functions and calling them.
       
   314 \begin{description}
       
   315   \item[2.1] Write a function to return the gcd of two numbers.
       
   316   \item[2.2 Primitive Pythagorean Triads] A pythagorean triad $(a,b,c)$ has the property $a^2 + b^2 = c^2$.\\By primitive we mean triads that do not `depend' on others. For example, (4,3,5) is a variant of (3,4,5) and hence is not primitive. And (10,24,26) is easily derived from (5,12,13) and should not be displayed by our program. \\
       
   317 Write a program to print primitive pythagorean triads. The program should generate all triads with a, b values in the range 0---100
       
   318 \item[2.3] Write a program that generates a list of all four digit numbers that have all their digits even and are perfect squares.\\For example, the output should include 6400 but not 8100 (one digit is odd) or 4248 (not a perfect square).
       
   319 \item[2.4 Aliquot] The aliquot of a number is defined as: the sum of the \emph{proper} divisors of the number. For example, the aliquot(12) = 1 + 2 + 3 + 4 + 6 = 16.\\
       
   320   Write a function that returns the aliquot number of a given number. 
       
   321 \item[2.5 Amicable pairs] A pair of numbers (a, b) is said to be \emph{amicable} if the aliquot number of a is b and the aliquot number of b is a.\\
       
   322   Example: \texttt{220, 284}\\
       
   323   Write a program that prints all five digit amicable pairs.
       
   324 \end{description}
       
   325 
       
   326 \section{Lists}
       
   327 \subsection{List creation and indexing}
       
   328 \begin{verbatim}
       
   329 >>> a = [] # An empty list.
       
   330 >>> a = [1, 2, 3, 4] # More useful.
       
   331 >>> len(a) 
       
   332 4
       
   333 >>> a[0] + a[1] + a[2] + a[-1]
       
   334 10
       
   335 \end{verbatim}
       
   336 
       
   337 \begin{verbatim}
       
   338 >>> a[1:3] # A slice.
       
   339 [2, 3]
       
   340 >>> a[1:-1]
       
   341 [2, 3, 4]
       
   342 >>> a[1:] == a[1:-1]
       
   343 False  
       
   344 \end{verbatim}
       
   345 Explain last result
       
   346 
       
   347 \newpage
       
   348 \subsection{List: more slices}
       
   349 \begin{verbatim}
       
   350 >>> a[0:-1:2] # Notice the step!
       
   351 [1, 3]
       
   352 >>> a[::2]
       
   353 [1, 3]
       
   354 >>> a[-1::-1]
       
   355 \end{verbatim}
       
   356 What do you think the last one will do?\\
       
   357 \emph{Note: Strings also use same indexing and slicing.}
       
   358   \subsection{List: examples}
       
   359 \begin{verbatim}
       
   360 >>> a = [1, 2, 3, 4]
       
   361 >>> a[:2]
       
   362 [1, 3]
       
   363 >>> a[0:-1:2]
       
   364 [1, 3]
       
   365 \end{verbatim}
       
   366 \emph{Lists are mutable (unlike strings)}
       
   367 
       
   368 \begin{verbatim}
       
   369 >>> a[1] = 20
       
   370 >>> a
       
   371 [1, 20, 3, 4]
       
   372 \end{verbatim}
       
   373 
       
   374   \subsection{Lists are mutable and heterogenous}
       
   375 \begin{verbatim}
       
   376 >>> a = ['spam', 'eggs', 100, 1234]
       
   377 >>> a[2] = a[2] + 23
       
   378 >>> a
       
   379 ['spam', 'eggs', 123, 1234]
       
   380 >>> a[0:2] = [1, 12] # Replace items
       
   381 >>> a
       
   382 [1, 12, 123, 1234]
       
   383 >>> a[0:2] = [] # Remove items
       
   384 >>> a.append( 12345 )
       
   385 >>> a
       
   386 [123, 1234, 12345]
       
   387 \end{verbatim}
       
   388 
       
   389   \subsection{List methods}
       
   390 \begin{verbatim}
       
   391 >>> a = ['spam', 'eggs', 1, 12]
       
   392 >>> a.reverse() # in situ
       
   393 >>> a
       
   394 [12, 1, 'eggs', 'spam']
       
   395 >>> a.append(['x', 1]) 
       
   396 >>> a
       
   397 [12, 1, 'eggs', 'spam', ['x', 1]]
       
   398 >>> a.extend([1,2]) # Extend the list.
       
   399 >>> a.remove( 'spam' )
       
   400 >>> a
       
   401 [12, 1, 'eggs', ['x', 1], 1, 2]
       
   402 \end{verbatim}
       
   403 
       
   404   \subsection{List containership}
       
   405   \begin{verbatim}
       
   406 >>> a = ['cat', 'dog', 'rat', 'croc']
       
   407 >>> 'dog' in a
       
   408 True
       
   409 >>> 'snake' in a
       
   410 False
       
   411 >>> 'snake' not in a
       
   412 True
       
   413 >>> 'ell' in 'hello world'
       
   414 True
       
   415   \end{verbatim}
       
   416   \subsection{Tuples: immutable}
       
   417 \begin{verbatim}
       
   418 >>> t = (0, 1, 2)
       
   419 >>> print t[0], t[1], t[2], t[-1] 
       
   420 0 1 2 2
       
   421 >>> t[0] = 1
       
   422 Traceback (most recent call last):
       
   423   File "<stdin>", line 1, in ?
       
   424 TypeError: object does not support item assignment
       
   425 \end{verbatim}  
       
   426     Multiple return values are actually a tuple.\\
       
   427     Exchange is tuple (un)packing
       
   428   \subsection{\texttt{range()} function}
       
   429   \begin{verbatim}
       
   430 >>> range(7)
       
   431 [0, 1, 2, 3, 4, 5, 6]
       
   432 >>> range( 3, 9)
       
   433 [3, 4, 5, 6, 7, 8]
       
   434 >>> range( 4, 17, 3)
       
   435 [4, 7, 10, 13, 16]
       
   436 >>> range( 5, 1, -1)
       
   437 [5, 4, 3, 2]
       
   438 >>> range( 8, 12, -1)
       
   439 []
       
   440   \end{verbatim}
       
   441 
       
   442   \subsection{\texttt{for\ldots range(\ldots)} idiom}
       
   443   \begin{verbatim}
       
   444 In [83]: for i in range(5):
       
   445    ....:     print i, i * i
       
   446    ....:     
       
   447    ....:     
       
   448 0 0
       
   449 1 1
       
   450 2 4
       
   451 3 9
       
   452 4 16
       
   453 \end{verbatim}
       
   454 
       
   455   \subsection{\texttt{for}: the list companion}
       
   456   
       
   457   \begin{verbatim}
       
   458 In [84]: a = ['a', 'b', 'c']
       
   459 In [85]: for x in a:
       
   460    ....:    print x, chr( ord(x) + 10 )
       
   461    ....:
       
   462 a  k
       
   463 b  l
       
   464 c  m
       
   465   \end{verbatim}
       
   466 
       
   467   \subsection{\texttt{for}: the list companion}
       
   468   \begin{verbatim}
       
   469 In [89]: for p, ch in enumerate( a ):
       
   470    ....:     print p, ch
       
   471    ....:     
       
   472    ....:     
       
   473 0 a
       
   474 1 b
       
   475 2 c
       
   476   \end{verbatim}
       
   477 Try: \texttt{print enumerate(a)}
       
   478 
       
   479 \section{Problem set 3}
       
   480   As you can guess, idea is to use \texttt{for}!
       
   481 
       
   482 \begin{description}
       
   483   \item[3.1] Which of the earlier problems is simpler when we use \texttt{for} instead of \texttt{while}? 
       
   484   \item[3.2] Given an empty chessboard and one Bishop placed in any square, say (r, c), generate the list of all squares the Bishop could move to.
       
   485   \item[3.3] Given two real numbers \texttt{a, b}, and an integer \texttt{N}, write a
       
   486   function named \texttt{linspace( a, b, N)} that returns an ordered list
       
   487   of \texttt{N} points starting with \texttt{a} and ending in \texttt{b} and
       
   488   equally spaced.\\
       
   489   For example, \texttt{linspace(0, 5, 11)}, should return, \\
       
   490 \begin{verbatim}
       
   491 [ 0.0 ,  0.5,  1.0 ,  1.5,  2.0 ,  2.5,  
       
   492   3.0 ,  3.5,  4.0 ,  4.5,  5.0 ]
       
   493 \end{verbatim}
       
   494   \item[3.4a] Use the \texttt{linspace} function and generate a list of N tuples of the form\\
       
   495 \texttt{[($x_1$,f($x_1$)),($x_2$,f($x_2$)),\ldots,($x_N$,f($x_N$))]}\\for the following functions,
       
   496 \begin{itemize}
       
   497   \item \texttt{f(x) = sin(x)}
       
   498   \item \texttt{f(x) = sin(x) + sin(10*x)}.
       
   499 \end{itemize}
       
   500 
       
   501 \item[3.4b] Using the tuples generated earlier, determine the intervals where the roots of the functions lie.
       
   502 \end{description}
       
   503 
       
   504 \section{IO}
       
   505   \subsection{Simple tokenizing and parsing}
       
   506   \begin{verbatim}
       
   507 s = """The quick brown fox jumped
       
   508        over the lazy dog"""
       
   509 for word in s.split():
       
   510     print word.capitalize()
       
   511   \end{verbatim}
       
   512 
       
   513   \begin{description}
       
   514     \item[4.1] Given a string like, ``1, 3-7, 12, 15, 18-21'', produce the list\\
       
   515       \texttt{[1,3,4,5,6,7,12,15,18,19,20,21]}
       
   516 \end{description}
       
   517 
       
   518   \subsection{File handling}
       
   519 \begin{verbatim}
       
   520 >>> f = open('/path/to/file_name')
       
   521 >>> data = f.read() # Read entire file.
       
   522 >>> line = f.readline() # Read one line.
       
   523 >>> f.close() # close the file.
       
   524 \end{verbatim}
       
   525 Writing files
       
   526 \begin{verbatim}
       
   527 >>> f = open('/path/to/file_name', 'w')
       
   528 >>> f.write('hello world\n')
       
   529 >>> f.close()
       
   530 \end{verbatim}
       
   531 
       
   532     \subsection{File and \texttt{for}}
       
   533 \begin{verbatim}
       
   534 >>> f = open('/path/to/file_name')
       
   535 >>> for line in f:
       
   536 ...     print line
       
   537 ...
       
   538 \end{verbatim}
       
   539 
       
   540   \begin{description}
       
   541     \item[4.2] The given file has lakhs of records in the form:
       
   542     \texttt{RGN;ID;NAME;MARK1;\ldots;MARK5;TOTAL;PFW}.
       
   543     Some entries may be empty.  Read the data from this file and print the
       
   544     name of the student with the maximum total marks.
       
   545   \item[4.3] For the same data file compute the average marks in different
       
   546     subjects, the student with the maximum mark in each subject and also
       
   547     the standard deviation of the marks.  Do this efficiently.
       
   548 \end{description}
       
   549 
       
   550 \section{Modules}
       
   551 \begin{verbatim}
       
   552 >>> sqrt(2)
       
   553 Traceback (most recent call last):
       
   554   File "<stdin>", line 1, in <module>
       
   555 NameError: name 'sqrt' is not defined
       
   556 >>> import math        
       
   557 >>> math.sqrt(2)
       
   558 1.4142135623730951
       
   559 
       
   560 >>> from math import sqrt
       
   561 >>> from math import *
       
   562 >>> from os.path import exists
       
   563 \end{verbatim}
       
   564 
       
   565   \subsection{Modules: example}
       
   566   \begin{verbatim}
       
   567 # --- arith.py ---
       
   568 def gcd(a, b):
       
   569     if a%b == 0: return b
       
   570     return gcd(b, a%b)
       
   571 def lcm(a, b):
       
   572     return a*b/gcd(a, b)
       
   573 # ------------------
       
   574 >>> import arith
       
   575 >>> arith.gcd(26, 65)
       
   576 13
       
   577 >>> arith.lcm(26, 65)
       
   578 130
       
   579   \end{verbatim}
       
   580 \section{Problem set 5}
       
   581   \begin{description}
       
   582     \item[5.1] Put all the functions you have written so far as part of the problems
       
   583   into one module called \texttt{iitb.py} and use this module from IPython.
       
   584   \end{description}
       
   585 \newpage
       
   586 
       
   587 \section{Data Structures}
       
   588 
       
   589    \subsection{Dictonary}
       
   590    \begin{verbatim}
       
   591 >>>d = { 'Hitchhiker\'s guide' : 42, 'Terminator' : 'I\'ll be back'}
       
   592 >>>d['Terminator']
       
   593 "I'll be back"
       
   594    \end{verbatim}
       
   595 
       
   596 \subsection{Problem Set 6.1}
       
   597 \begin{description}
       
   598 \item[6.1.1] You are given date strings of the form ``29, Jul 2009'', or ``4 January 2008''. In other words a number a string and another number, with a comma sometimes separating the items.Write a function that takes such a string and returns a tuple (yyyy, mm, dd) where all three elements are ints.
       
   599 \item[6.1.2] Count word frequencies in a file.
       
   600 \item[6.1.3] Find the most used Python keywords in your Python code (import keyword).
       
   601 \end{description}
       
   602 \subsection{Set}
       
   603 \begin{verbatim}
       
   604 >>> f10 = set([1,2,3,5,8])
       
   605 >>> p10 = set([2,3,5,7])
       
   606 >>> f10|p10
       
   607 set([1, 2, 3, 5, 7, 8])
       
   608 >>> f10&p10
       
   609 set([2, 3, 5])
       
   610 >>> f10-p10
       
   611 set([8, 1])
       
   612 >>> p10-f10, f10^p10
       
   613 set([7]), set([1, 7, 8])
       
   614 >>> set([2,3]) < p10
       
   615 True
       
   616 >>> set([2,3]) <= p10
       
   617 True
       
   618 >>> 2 in p10
       
   619 True
       
   620 >>> 4 in p10
       
   621 False
       
   622 >>> len(f10)
       
   623 5
       
   624 \end{verbatim}
       
   625 
       
   626 \subsection{Problem Set 6.2}
       
   627 \begin{description}
       
   628   \item[6.2.1] Given a dictionary of the names of students and their marks, identify how many duplicate marks are there? and what are these?
       
   629   \item[6.2.2] Given a string of the form ``4-7, 9, 12, 15'' find the numbers missing in this list for a given range.
       
   630 \end{description}
       
   631 \subsection{Fuctions: default arguments}
       
   632 \begin{verbatim}
       
   633 def ask_ok(prompt, complaint='Yes or no!'):
       
   634     while True:
       
   635         ok = raw_input(prompt)
       
   636         if ok in ('y', 'ye', 'yes'): 
       
   637             return True
       
   638         if ok in ('n', 'no', 'nop',
       
   639                   'nope'): 
       
   640             return False
       
   641         print complaint
       
   642 
       
   643 ask_ok('?')
       
   644 ask_ok('?', '[Y/N]')
       
   645 \end{verbatim}
       
   646 \newpage
       
   647 \subsection{Fuctions: keyword arguments}
       
   648 \begin{verbatim}
       
   649 def ask_ok(prompt, complaint='Yes or no!'):
       
   650     while True:
       
   651         ok = raw_input(prompt)
       
   652         if ok in ('y', 'ye', 'yes'): 
       
   653             return True
       
   654         if ok in ('n', 'no', 'nop',
       
   655                   'nope'): 
       
   656             return False
       
   657         print complaint
       
   658 
       
   659 ask_ok(prompt='?')
       
   660 ask_ok(prompt='?', complaint='[y/n]')
       
   661 ask_ok(complaint='[y/n]', prompt='?')
       
   662 \end{verbatim}
       
   663 \subsection{List Comprehensions}
       
   664 Lets say we want to squares of all the numbers from 1 to 100
       
   665 \begin{verbatim}
       
   666 squares = []
       
   667 for i in range(1, 100):
       
   668     squares.append(i * i)
       
   669 # list comprehension
       
   670 squares = [i*i for i in range(1, 100)
       
   671            if i % 10 in [1, 2, 5, 7]]
       
   672 \end{verbatim}
       
   673 \end{document}