Added exercises and slides to getting started with symbolics
authorAmit Sethi
Wed, 10 Nov 2010 17:19:54 +0530
changeset 442 a9b71932cbfa
parent 441 430035b678f7
child 443 79a7ca3073d4
Added exercises and slides to getting started with symbolics
getting-started-with-lists/script.rst.orig
getting-started-with-symbolics/script.rst
getting-started-with-symbolics/slides.org
getting-started-with-symbolics/slides.tex
symbolics/slides.org
--- a/getting-started-with-lists/script.rst.orig	Wed Nov 10 12:23:40 2010 +0530
+++ b/getting-started-with-lists/script.rst.orig	Wed Nov 10 17:19:54 2010 +0530
@@ -1,361 +1,224 @@
-<?xml version="1.0" encoding="utf-8" ?>
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
-<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
-<head>
-<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
-<meta name="generator" content="Docutils 0.6: http://docutils.sourceforge.net/" />
-<title></title>
-<style type="text/css">
-
-/*
-:Author: David Goodger (goodger@python.org)
-:Id: $Id: html4css1.css 5951 2009-05-18 18:03:10Z milde $
-:Copyright: This stylesheet has been placed in the public domain.
-
-Default cascading style sheet for the HTML output of Docutils.
+.. Objectives
+.. ----------
 
-See http://docutils.sf.net/docs/howto/html-stylesheets.html for how to
-customize this style sheet.
-*/
-
-/* used to remove borders from tables and images */
-.borderless, table.borderless td, table.borderless th {
-  border: 0 }
-
-table.borderless td, table.borderless th {
-  /* Override padding for "table.docutils td" with "! important".
-     The right padding separates the table cells. */
-  padding: 0 0.5em 0 0 ! important }
-
-.first {
-  /* Override more specific margin styles with "! important". */
-  margin-top: 0 ! important }
-
-.last, .with-subtitle {
-  margin-bottom: 0 ! important }
+.. By the end of this tutorial, you will be able to
 
-.hidden {
-  display: none }
-
-a.toc-backref {
-  text-decoration: none ;
-  color: black }
-
-blockquote.epigraph {
-  margin: 2em 5em ; }
-
-dl.docutils dd {
-  margin-bottom: 0.5em }
-
-/* Uncomment (and remove this text!) to get bold-faced definition list terms
-dl.docutils dt {
-  font-weight: bold }
-*/
+.. Create Lists.
+.. Access List elements.
+.. Append elemets to list
+.. Delete list elemets
 
-div.abstract {
-  margin: 2em 5em }
+.. 1. getting started with ipython 
 
-div.abstract p.topic-title {
-  font-weight: bold ;
-  text-align: center }
 
-div.admonition, div.attention, div.caution, div.danger, div.error,
-div.hint, div.important, div.note, div.tip, div.warning {
-  margin: 2em ;
-  border: medium outset ;
-  padding: 1em }
 
-div.admonition p.admonition-title, div.hint p.admonition-title,
-div.important p.admonition-title, div.note p.admonition-title,
-div.tip p.admonition-title {
-  font-weight: bold ;
-  font-family: sans-serif }
+.. Prerequisites
+.. -------------
 
-div.attention p.admonition-title, div.caution p.admonition-title,
-div.danger p.admonition-title, div.error p.admonition-title,
-div.warning p.admonition-title {
-  color: red ;
-  font-weight: bold ;
-  font-family: sans-serif }
-
-/* Uncomment (and remove this text!) to get reduced vertical space in
-   compound paragraphs.
-div.compound .compound-first, div.compound .compound-middle {
-  margin-bottom: 0.5em }
-
-div.compound .compound-last, div.compound .compound-middle {
-  margin-top: 0.5em }
-*/
+..   1. getting started with strings
+..   #. getting started with lists
+..   #. basic datatypes
+     
+.. Author              : Amit 
+   Internal Reviewer   : Anoop Jacob Thomas <anoop@fossee.in>
+   External Reviewer   :
+   Checklist OK?       : <put date stamp here, if OK> [2010-10-05]
 
-div.dedication {
-  margin: 2em 5em ;
-  text-align: center ;
-  font-style: italic }
-
-div.dedication p.topic-title {
-  font-weight: bold ;
-  font-style: normal }
+.. #[[Anoop: Slides contain only outline and summary
 
-div.figure {
-  margin-left: 2em ;
-  margin-right: 2em }
-
-div.footer, div.header {
-  clear: both;
-  font-size: smaller }
-
-div.line-block {
-  display: block ;
-  margin-top: 1em ;
-  margin-bottom: 1em }
+Script
+------
+ {{{ Show the slide containing title }}}
 
-div.line-block div.line-block {
-  margin-top: 0 ;
-  margin-bottom: 0 ;
-  margin-left: 1.5em }
+Hello friends and welcome to the tutorial on getting started with
+lists.
 
-div.sidebar {
-  margin: 0 0 0.5em 1em ;
-  border: medium outset ;
-  padding: 1em ;
-  background-color: #ffffee ;
-  width: 40% ;
-  float: right ;
-  clear: right }
-
-div.sidebar p.rubric {
-  font-family: sans-serif ;
-  font-size: medium }
-
-div.system-messages {
-  margin: 5em }
+ {{{ Show the slide containing the outline slide }}}
 
-div.system-messages h1 {
-  color: red }
-
-div.system-message {
-  border: medium outset ;
-  padding: 1em }
+In this tutorial we will be getting acquainted with a python data
+structure called lists.  We will learn ::
+ 
+ * How to create lists
+ * Structure of lists
+ * Access list elements
+ * Append elements to lists
+ * Delete elements from lists
 
-div.system-message p.system-message-title {
-  color: red ;
-  font-weight: bold }
-
-div.topic {
-  margin: 2em }
-
-h1.section-subtitle, h2.section-subtitle, h3.section-subtitle,
-h4.section-subtitle, h5.section-subtitle, h6.section-subtitle {
-  margin-top: 0.4em }
-
-h1.title {
-  text-align: center }
+List is a compound data type, it can contain data of other data
+types. List is also a sequence data type, all the elements are in
+order and the order has a meaning.
 
-h2.subtitle {
-  text-align: center }
-
-hr.docutils {
-  width: 75% }
-
-img.align-left, .figure.align-left{
-  clear: left ;
-  float: left ;
-  margin-right: 1em }
-
-img.align-right, .figure.align-right {
-  clear: right ;
-  float: right ;
-  margin-left: 1em }
+.. #[[Anoop: "all the elements are in order and **there** order has a
+   meaning." - I guess something is wrong here, I am not able to
+   follow this.]]
 
-.align-left {
-  text-align: left }
-
-.align-center {
-  clear: both ;
-  text-align: center }
-
-.align-right {
-  text-align: right }
+We will first create an empty list with no elements. On your IPython
+shell type ::
 
-/* reset inner alignment in figures */
-div.align-right {
-  text-align: left }
-
-/* div.align-center * { */
-/*   text-align: left } */
-
-ol.simple, ul.simple {
-  margin-bottom: 1em }
+   empty = [] 
+   type(empty)
+   
 
-ol.arabic {
-  list-style: decimal }
-
-ol.loweralpha {
-  list-style: lower-alpha }
-
-ol.upperalpha {
-  list-style: upper-alpha }
+This is an empty list without any elements.
 
-ol.lowerroman {
-  list-style: lower-roman }
-
-ol.upperroman {
-  list-style: upper-roman }
-
-p.attribution {
-  text-align: right ;
-  margin-left: 50% }
+.. #[[Anoop: the document has to be continous, without any
+   subheadings, removing * Filled lists]]
 
-p.caption {
-  font-style: italic }
+Lets now see how to define a non-empty list. We do it as,::
 
-p.credits {
-  font-style: italic ;
-  font-size: smaller }
-
-p.label {
-  white-space: nowrap }
+     nonempty = ['spam', 'eggs', 100, 1.234]
 
-p.rubric {
-  font-weight: bold ;
-  font-size: larger ;
-  color: maroon ;
-  text-align: center }
-
-p.sidebar-title {
-  font-family: sans-serif ;
-  font-weight: bold ;
-  font-size: larger }
+Thus the simplest way of creating a list is typing out a sequence 
+of comma-separated values (items) between square brackets. 
+All the list items need not be of the same data type.
 
-p.sidebar-subtitle {
-  font-family: sans-serif ;
-  font-weight: bold }
-
-p.topic-title {
-  font-weight: bold }
+As we can see lists can contain different kinds of data. In the
+previous example 'spam' and 'eggs' are strings and 100 and 1.234 are
+integer and float. Thus we can put elements of heterogenous types in
+lists including list itself.
 
-pre.address {
-  margin-bottom: 0 ;
-  margin-top: 0 ;
-  font: inherit }
-
-pre.literal-block, pre.doctest-block {
-  margin-left: 2em ;
-  margin-right: 2em }
+.. #[[Anoop: the sentence "Thus list themselves can be one of the
+   element types possible in lists" is not clear, rephrase it.]]
 
-span.classifier {
-  font-family: sans-serif ;
-  font-style: oblique }
+Example ::
 
-span.classifier-delimiter {
-  font-family: sans-serif ;
-  font-weight: bold }
+      listinlist=[[4,2,3,4],'and', 1, 2, 3, 4]
 
-span.interpreted {
-  font-family: sans-serif }
-
-span.option {
-  white-space: nowrap }
-
-span.pre {
-  white-space: pre }
-
-span.problematic {
-  color: red }
+We access list elements using the index. The index begins from 0. So
+for list nonempty, nonempty[0] gives the first element, nonempty[1]
+the second element and so on and nonempty[3] the last element. ::
 
-span.section-subtitle {
-  /* font-size relative to parent (h1..h6 element) */
-  font-size: 80% }
-
-table.citation {
-  border-left: solid 1px gray;
-  margin-left: 1px }
+	    nonempty[0] 
+	    nonempty[1] 
+	    nonempty[3]
 
-table.docinfo {
-  margin: 2em 4em }
+Following is an exercise that you must do. 
 
-table.docutils {
-  margin-top: 0.5em ;
-  margin-bottom: 0.5em }
-
-table.footnote {
-  border-left: solid 1px black;
-  margin-left: 1px }
+%% %% What happens when you do nonempty[-1]. 
 
-table.docutils td, table.docutils th,
-table.docinfo td, table.docinfo th {
-  padding-left: 0.5em ;
-  padding-right: 0.5em ;
-  vertical-align: top }
-
-table.docutils th.field-name, table.docinfo th.docinfo-name {
-  font-weight: bold ;
-  text-align: left ;
-  white-space: nowrap ;
-  padding-left: 0 }
+Please, pause the video here. Do the exercise and then continue.  
 
-h1 tt.docutils, h2 tt.docutils, h3 tt.docutils,
-h4 tt.docutils, h5 tt.docutils, h6 tt.docutils {
-  font-size: 100% }
+.. #[[Anoop: was negative indices introduced earlier, if not may be we
+   can ask them to try out nonempty[-1] and see what happens and then
+   tell that it gives the last element in the list.]]
 
-ul.auto-toc {
-  list-style-type: none }
-
-</style>
-</head>
-<body>
-<div class="document">
+As you can see you get the last element which is 1.234.
 
 
-<div class="section" id="objective-questions">
-<h1>Objective Questions</h1>
-<!-- A mininum of 8 questions here (along with answers) -->
-<ol class="arabic">
-<li><p class="first">How do you create an empty list?</p>
-<pre class="literal-block">
-empty=[]
-</pre>
-</li>
-<li><p class="first">What is the most important property of sequence data types like lists?</p>
-<p>The elements are in order and can be accessed by index numbers.</p>
-</li>
-<li><p class="first">Can you have a list inside a list ?</p>
-<p>Yes,List can contain all the other data types, including list.</p>
-<p>Example:
-list_in_list=[2.3,[2,4,6],'string,'all datatypes can be there']</p>
-</li>
-<li><p class="first">What is the index number of the first element in a list?</p>
-<p>0
-nonempty = ['spam', 'eggs', 100, 1.234]
-nonempty[0]</p>
-</li>
-<li><p class="first">How would you access the end of a list without finding its length?</p>
-<p>Using negative indices. We can the list from the end using negative indices.</p>
-<p>::
-nonempty = ['spam', 'eggs', 100, 1.234]
-nonempty[-1]</p>
-</li>
-<li><p class="first">What is the function to find the length of a list?</p>
-<p>len</p>
-</li>
-<li><p class="first">Delete the last element from list sq=[5,4,3,2,1,0]</p>
-<p>del(sq[-1])</p>
-</li>
-<li><p class="first">How many will you have to use remove function to remove all 6's from the given list sq=[2,5,6,7,6,4,6]?</p>
-<p>3</p>
-</li>
-</ol>
-</div>
-<div class="section" id="larger-questions">
-<h1>Larger Questions</h1>
-<!-- A minimum of 2 questions here (along with answers) -->
-<p>1. Add all elemets of seq1=['e','f','g','h']
-to the sequence seq=['a','b','c','d']</p>
-<ol class="arabic simple" start="2">
-<li>Delete all elements of seq1=[3,5,6] from sequence
-seq=[1,2,3,4,5,6,7,8,9]</li>
-</ol>
-</div>
-</div>
-</body>
-</html>
+In python negative indices are used to access elements from the end::
+   
+   nonempty[-1] 
+   nonempty[-2] 
+   nonempty[-4]
+
+-1 gives the last element which is the 4th element , -2 second to last
+and -4 gives the fourth from last element which is first element.
+
+We can append elements to the end of a list using append command. ::
+
+   nonempty.append('onemore') 
+   nonempty
+   nonempty.append(6) 
+   nonempty
+   
+Following are  exercises that you must do. 
+
+%% %% What is the syntax to get the element 'and' 
+in the list,listinlist ?
+
+
+%% %% How would you get 'and' using negative indices?
+
+Please, pause the video here. Do the exercise and then continue.  
+
+The solution is on your screen
+
+
+As we can see non empty appends 'onemore' and 6 at the end.
+
+Using len function we can check the number of elements in the list
+nonempty. In this case it 6 ::
+	 
+	 len(nonempty)
+
+
+
+Just like we can append elements to a list we can also remove them.
+There are two ways of doing it. One is by using index. ::
+
+      del(nonempty[1])
+
+
+
+deletes the element at index 1, 'eggs' which is the second element of
+the list. The other way is removing element by content. Lets say one
+wishes to delete 100 from nonempty list the syntax of the command
+should be
+
+.. #[[Anoop: let x = [1,2,1,3]
+   	     now x.remove(x[2])
+	     still x is [2,1,3] so that is not the way to remove
+	     element by index, it removed first occurrence of 1(by
+	     content) and not based on index, so make necessary
+	     changes]]
+
+::
+
+    nonempty.remove(100)
+
+but what if there were two 100's. To check that lets do a small
+experiment. ::
+
+	   nonempty.append('spam') 
+	   nonempty
+	   nonempty.remove('spam') 
+	   nonempty
+
+If we check now we will see that the first occurence 'spam' is removed
+thus remove removes the first occurence of the element in the sequence
+and leaves others untouched.
+
+
+
+
+
+.. #[[Anoop: does it have two spams or two pythons?]]
+
+.. #[[Anoop: there are no exercises/solved problems in this script,
+   add them]]
+
+Following are  exercises that you must do. 
+
+%% %% Remove the third element from the list, listinlist.   
+
+%% %% Remove 'and' from the list, listinlist.
+
+Please, pause the video here. Do the exercise and then continue.  
+
+
+
+{{{Slide for Summary }}}
+
+
+In this tutorial we came across a sequence data type called lists. ::
+
+ * We learned how to create lists.  
+ * How to access lists.
+ * Append elements to list.
+ * Delete Element from list.  
+ * And Checking list length.
+ 
+
+
+{{{ show Sponsored by Fossee Slide }}}
+
+This tutorial was created as a part of FOSSEE project.
+
+I hope you found this tutorial useful.
+
+Thank You
+
+..
+ * Author : Amit Sethi 
+ * First Reviewer : 
+ * Second Reviewer : Nishanth
--- a/getting-started-with-symbolics/script.rst	Wed Nov 10 12:23:40 2010 +0530
+++ b/getting-started-with-symbolics/script.rst	Wed Nov 10 17:19:54 2010 +0530
@@ -4,7 +4,7 @@
 .. By the end of this tutorial, you will be able to
 
 .. 1. Defining symbolic expressions in sage.  
-.. # Using built-in costants and functions. 
+.. # Using built-in constants and functions. 
 .. # Performing Integration, differentiation using sage. 
 .. # Defining matrices. 
 .. # Defining Symbolic functions.  
@@ -37,7 +37,7 @@
 {{{ Show outline slide  }}}
 
 * Defining symbolic expressions in sage.  
-* Using built-in costants and functions. 
+* Using built-in constants and functions. 
 * Performing Integration, differentiation using sage. 
 * Defining matrices. 
 * Defining Symbolic functions.  
@@ -73,26 +73,32 @@
    var('x,alpha,y,beta') 
    x^2/alpha^2+y^2/beta^2
  
-taking another example
+taking another example ::
    
    var('theta')
-   sin^2(theta)+cos^2(theta)
-
+   sin(theta)*sin(theta)+cos(theta)*cos(theta)
 
-Similarly, we can define many algebraic and trigonometric expressions
-using sage .
+Similarly, we can define many algebraic and trigonometric expressions using sage .
 
 
-Sage also provides a few built-in constants which are commonly used in
-mathematics .
+Following is an exercise that you must do. 
 
-example : pi,e,infinity , Function n gives the numerical values of all these
-    constants.
+%% %%  Define following expressions as symbolic expressions
+in sage?
+   
+   1. x^2+y^2
+   #. y^2-4ax
+  
+Please, pause the video here. Do the exercise and then continue. 
 
-{{{ Type n(pi)
-   	n(e)
-	n(oo) 
-    On the sage notebook }}}  
+The solution is on your screen.
+
+
+Sage also provides a few built-in constants which are commonly used in mathematics .
+
+example : pi,e,infinity , Function n gives the numerical values of all these constants.
+
+{{{ Type n(pi) n(e) n(oo) On the sage notebook }}}
 
 
 
@@ -131,6 +137,24 @@
      
    log(e,e)
 
+Following is are exercises that you must do. 
+
+%% %% Find the values of the following constants upto 6 digits  precision 
+   
+   1. pi^2
+   #. euler_gamma^2
+
+
+%% %% Find the value of the following.
+
+   1. sin(pi/4)
+   #. ln(23)  
+
+Please, pause the video here. Do the exercises and then continue. 
+
+The solutions are on your screen.
+
+
 
 Given that we have defined variables like x,y etc .. , We can define
 an arbitrary function with desired name in the following way.::
@@ -157,13 +181,16 @@
       
 
       var('x') 
-      h(x)=x^2 g(x)=1 
+      h(x)=x^2 
+      g(x)=1 
       f=Piecewise(<Tab>
 
 {{{ Show the documentation of Piecewise }}} 
     
 ::
-      f=Piecewise([[(0,1),h(x)],[(1,2),g(x)]],x) f
+      f=Piecewise([[(0,1),h(x)],[(1,2),g(x)]],x) 
+      f
+
 
 
 
@@ -184,9 +211,7 @@
    
    var('n') 
    function('f', n)
-
    f(n) = 1/n^2
-
    sum(f(n), n, 1, oo)
 
  
@@ -200,6 +225,18 @@
 This series converges to pi/4. 
 
 
+Following  are exercises that you must do. 
+
+%% %% Define the piecewise function. 
+   f(x)=3x+2 
+   when x is in the closed interval 0 to 4.
+   f(x)=4x^2
+   between 4 to 6. 
+   
+%% %% Sum  of 1/(n^2-1) where n ranges from 1 to infinity. 
+
+Please, pause the video here. Do the exercise(s) and then continue. 
+
 Moving on let us see how to perform simple calculus operations using Sage
 
 For example lets try an expression first ::
@@ -267,6 +304,22 @@
 as we can see when we substitute the value the answer is almost = 0 showing 
 the solution we got was correct.
 
+Following is an (are) exercise(s) that you must do. 
+
+%% %% Differentiate the following. 
+      
+      1. sin(x^3)+log(3x)  , degree=2
+      #. x^5*log(x^7)      , degree=4 
+
+%% %% Integrate the given expression 
+      
+      sin(x^2)+exp(x^3) 
+
+%% %% Find x
+      cos(x^2)-log(x)=0
+      Does the equation have a root between 1,2. 
+
+Please, pause the video here. Do the exercises and then continue. 
 
 
 
@@ -286,8 +339,18 @@
     A.inverse()
 
 
+Following is an (are) exercise(s) that you must do. 
 
-{{{ Part of the notebook with summary }}}
+%% %% Find the determinant and inverse of :
+
+      A=[[x,0,1][y,1,0][z,0,y]]
+
+Please, pause the video here. Do the exercise(s) and then continue. 
+
+
+
+
+{{{ Show the summary slide }}}
 
 So in this tutorial we learnt how to
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/getting-started-with-symbolics/slides.org	Wed Nov 10 17:19:54 2010 +0530
@@ -0,0 +1,166 @@
+#+LaTeX_CLASS: beamer
+#+LaTeX_CLASS_OPTIONS: [presentation]
+#+BEAMER_FRAME_LEVEL: 1
+
+#+BEAMER_HEADER_EXTRA: \usetheme{Warsaw}\usecolortheme{default}\useoutertheme{infolines}\setbeamercovered{transparent}
+#+COLUMNS: %45ITEM %10BEAMER_env(Env) %10BEAMER_envargs(Env Args) %4BEAMER_col(Col) %8BEAMER_extra(Extra)
+#+PROPERTY: BEAMER_col_ALL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 :ETC
+
+#+LaTeX_CLASS: beamer
+#+LaTeX_CLASS_OPTIONS: [presentation]
+
+#+LaTeX_HEADER: \usepackage[english]{babel} \usepackage{ae,aecompl}
+#+LaTeX_HEADER: \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet}
+
+#+LaTeX_HEADER: \usepackage{listings}
+
+#+LaTeX_HEADER:\lstset{language=Python, basicstyle=\ttfamily\bfseries,
+#+LaTeX_HEADER:  commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen},
+#+LaTeX_HEADER:  showstringspaces=false, keywordstyle=\color{blue}\bfseries}
+
+#+TITLE:   Getting started with symbolics
+#+AUTHOR:    FOSSEE
+#+EMAIL:     
+#+DATE:    
+
+#+DESCRIPTION: 
+#+KEYWORDS: 
+#+LANGUAGE:  en
+#+OPTIONS:   H:3 num:nil toc:nil \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
+#+OPTIONS:   TeX:t LaTeX:nil skip:nil d:nil todo:nil pri:nil tags:not-in-toc
+
+* Outline
+  - Defining symbolic expressions in sage.  
+  - Using built-in constants and functions.   
+  - Performing Integration, differentiation using sage. 
+  - Defining matrices. 
+  - Defining Symbolic functions.  
+  - Simplifying and solving symbolic expressions and functions.
+
+* Questions 1
+  - Define the following expression as symbolic
+    expression in sage.
+
+    - x^2+y^2
+    - y^2-4ax
+  
+* Solutions 1
+#+begin_src python
+  var('x,y')
+  x^2+y^2
+
+  var('a,x,y')
+  y^2-4*a*x
+#+end_src python
+* Questions 2
+  - Find the values of the following constants upto 6 digits  precision 
+   
+    - pi^2
+   
+      
+  - Find the value of the following.
+
+   - sin(pi/4)
+   - ln(23)  
+
+* Solutions 2
+#+begin_src python
+  n(pi^2,digits=6)
+  n(sin(pi/4))
+  n(log(23,e))
+#+end_src python
+* Question 2
+  - Define the piecewise function. 
+   f(x)=3x+2 
+   when x is in the closed interval 0 to 4.
+   f(x)=4x^2
+   between 4 to 6. 
+   
+  - Sum  of 1/(n^2-1) where n ranges from 1 to infinity. 
+
+* Solution Q1
+#+begin_src python
+  var('x') 
+  h(x)=3*x+2 
+  g(x)= 4*x^2
+  f=Piecewise([[(0,4),h(x)],[(4,6),g(x)]],x)
+  f
+#+end_src python
+* Solution Q2
+#+begin_src python  
+  var('n')
+  f=1/(n^2-1) 
+  sum(f(n), n, 1, oo)
+#+end_src python  
+ 
+
+* Questions 3
+  - Differentiate the following. 
+      
+    - x^5*log(x^7)  , degree=4 
+
+  - Integrate the given expression 
+      
+    - x*sin(x^2) 
+
+  - Find x
+    - cos(x^2)-log(x)=0
+    - Does the equation have a root between 1,2. 
+
+* Solutions 3
+#+begin_src python
+  var('x')
+  f(x)= x^5*log(x^7) 
+  diff(f(x),x,5)
+
+  var('x')
+  integral(x*sin(x^2),x) 
+
+  var('x')
+  f=cos(x^2)-log(x)
+  find_root(f(x)==0,1,2)
+#+end_src
+
+* Question 4
+  - Find the determinant and inverse of :
+
+      A=[[x,0,1][y,1,0][z,0,y]]
+
+* Solution 4
+#+begin_src python  
+  var('x,y,z')
+  A=matrix([[x,0,1],[y,1,0],[z,0,y]])
+  A.det()
+  A.inverse()
+#+end_src
+* Summary
+ - We learnt about defining symbolic 
+   expression and functions.  
+ - Using built-in constants and functions.  
+ - Using <Tab>  to see the documentation of a 
+   function.  
+ 
+* Summary 
+ - Simple calculus operations .  
+ - Substituting values in expression 
+   using substitute function.
+ - Creating symbolic matrices and 
+   performing operation on them .
+
+* Thank you!
+#+begin_latex
+  \begin{block}{}
+  \begin{center}
+  This spoken tutorial has been produced by the
+  \textcolor{blue}{FOSSEE} team, which is funded by the 
+  \end{center}
+  \begin{center}
+    \textcolor{blue}{National Mission on Education through \\
+      Information \& Communication Technology \\ 
+      MHRD, Govt. of India}.
+  \end{center}  
+  \end{block}
+#+end_latex
+
+
+
--- a/getting-started-with-symbolics/slides.tex	Wed Nov 10 12:23:40 2010 +0530
+++ b/getting-started-with-symbolics/slides.tex	Wed Nov 10 17:19:54 2010 +0530
@@ -1,21 +1,34 @@
-% Created 2010-10-21 Thu 00:06
+% Created 2010-11-10 Wed 17:18
 \documentclass[presentation]{beamer}
-\usetheme{Warsaw}\useoutertheme{infolines}\usecolortheme{default}\setbeamercovered{transparent}
 \usepackage[latin1]{inputenc}
 \usepackage[T1]{fontenc}
+\usepackage{fixltx2e}
 \usepackage{graphicx}
 \usepackage{longtable}
 \usepackage{float}
 \usepackage{wrapfig}
 \usepackage{soul}
+\usepackage{t1enc}
+\usepackage{textcomp}
+\usepackage{marvosym}
+\usepackage{wasysym}
+\usepackage{latexsym}
 \usepackage{amssymb}
 \usepackage{hyperref}
-
+\tolerance=1000
+\usepackage[english]{babel} \usepackage{ae,aecompl}
+\usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet}
+\usepackage{listings}
+\lstset{language=Python, basicstyle=\ttfamily\bfseries,
+commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen},
+showstringspaces=false, keywordstyle=\color{blue}\bfseries}
+\providecommand{\alert}[1]{\textbf{#1}}
 
-\title{Plotting Data }
+\title{Getting started with symbolics}
 \author{FOSSEE}
-\date{2010-09-14 Tue}
+\date{}
 
+\usetheme{Warsaw}\usecolortheme{default}\useoutertheme{infolines}\setbeamercovered{transparent}
 \begin{document}
 
 \maketitle
@@ -25,43 +38,222 @@
 
 
 
+
+
+
 \begin{frame}
-\frametitle{Tutorial Plan}
+\frametitle{Outline}
 \label{sec-1}
+
 \begin{itemize}
+\item Defining symbolic expressions in sage.
+\item Using built-in constants and functions.
+\item Performing Integration, differentiation using sage.
+\item Defining matrices.
+\item Defining Symbolic functions.
+\item Simplifying and solving symbolic expressions and functions.
+\end{itemize}
+\end{frame}
+\begin{frame}
+\frametitle{Questions 1}
+\label{sec-2}
+
+\begin{itemize}
+\item Define the following expression as symbolic
+    expression in sage.
+
+\begin{itemize}
+\item x$^2$+y$^2$
+\item y$^2$-4ax
+\end{itemize}
+
+\end{itemize}
+
+  
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solutions 1}
+\label{sec-3}
+
+\begin{verbatim}
+var('x,y')
+x^2+y^2
+
+var('a,x,y')
+y^2-4*a*x
+\end{verbatim}
+\end{frame}
+\begin{frame}
+\frametitle{Questions 2}
+\label{sec-4}
+
+\begin{itemize}
+\item Find the values of the following constants upto 6 digits  precision
+
+\begin{itemize}
+\item pi$^2$
+\end{itemize}
+
+\item Find the value of the following.
+
+\begin{itemize}
+\item sin(pi/4)
+\item ln(23)
+\end{itemize}
+
+\end{itemize}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solutions 2}
+\label{sec-5}
+
+\begin{verbatim}
+n(pi^2,digits=6)
+n(sin(pi/4))
+n(log(23,e))
+\end{verbatim}
+\end{frame}
+\begin{frame}
+\frametitle{Question 2}
+\label{sec-6}
 
-\item Defining symbolic expressions in sage.\\
-\label{sec-1.1}%
-\item Using built-in costants and functions.\\
-\label{sec-1.2}%
-\item Performing Integration, differentiation using sage.\\
-\label{sec-1.3}%
-\item Defining matrices.\\
-\label{sec-1.4}%
-\item Defining Symbolic functions.\\
-\label{sec-1.5}%
-\item Simplifying and solving symbolic expressions and functions.\\
-\label{sec-1.6}%
-\end{itemize} % ends low level
+\begin{itemize}
+\item Define the piecewise function. 
+   f(x)=3x+2 
+   when x is in the closed interval 0 to 4.
+   f(x)=4x$^2$
+   between 4 to 6.
+\item Sum  of 1/(n$^2$-1) where n ranges from 1 to infinity.
+\end{itemize}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solution Q1}
+\label{sec-7}
+
+\begin{verbatim}
+var('x') 
+h(x)=3*x+2 
+g(x)= 4*x^2
+f=Piecewise([[(0,4),h(x)],[(4,6),g(x)]],x)
+f
+\end{verbatim}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solution Q2}
+\label{sec-8}
+
+\begin{verbatim}
+var('n')
+f=1/(n^2-1) 
+sum(f(n), n, 1, oo)
+\end{verbatim}
+ 
+\end{frame}
+\begin{frame}
+\frametitle{Questions 3}
+\label{sec-9}
+
+\begin{itemize}
+\item Differentiate the following.
+
+\begin{itemize}
+\item x$^5$*log(x$^7$)  , degree=4
+\end{itemize}
+
+\item Integrate the given expression
+
+\begin{itemize}
+\item x*sin(x$^2$)
+\end{itemize}
+
+\item Find x
+
+\begin{itemize}
+\item cos(x$^2$)-log(x)=0
+\item Does the equation have a root between 1,2.
+\end{itemize}
+
+\end{itemize}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solutions 3}
+\label{sec-10}
+
+\begin{verbatim}
+var('x')
+f(x)= x^5*log(x^7) 
+diff(f(x),x,5)
+
+var('x')
+integral(x*sin(x^2),x) 
+
+var('x')
+f=cos(x^2)-log(x)
+find_root(f(x)==0,1,2)
+\end{verbatim}
+\end{frame}
+\begin{frame}
+\frametitle{Question 4}
+\label{sec-11}
+
+\begin{itemize}
+\item Find the determinant and inverse of :
+
+      A=[[x,0,1][y,1,0][z,0,y]]
+\end{itemize}
+\end{frame}
+\begin{frame}[fragile]
+\frametitle{Solution 4}
+\label{sec-12}
+
+\begin{verbatim}
+var('x,y,z')
+A=matrix([[x,0,1],[y,1,0],[z,0,y]])
+A.det()
+A.inverse()
+\end{verbatim}
 \end{frame}
 \begin{frame}
 \frametitle{Summary}
-\label{sec-2}
+\label{sec-13}
+
 \begin{itemize}
+\item We learnt about defining symbolic 
+   expression and functions.
+\item Using built-in constants and functions.
+\item Using <Tab>  to see the documentation of a 
+   function.
+\end{itemize}
+
+ 
+\end{frame}
+\begin{frame}
+\frametitle{Summary}
+\label{sec-14}
 
-\item We learnt about defining symbolic expression and functions.\\
-\label{sec-2.1}%
-\item Using built-in constants and functions.\\
-\label{sec-2.2}%
-\item Using <Tab>  to see the documentation of a function.\\
-\label{sec-2.3}%
-\item Simple calculus operations .\\
-\label{sec-2.4}%
-\item Substituting values in expression using substitute function.\\
-\label{sec-2.5}%
-\item Creating symbolic matrices and performing operation on them .\\
-\label{sec-2.6}%
-\end{itemize} % ends low level
+\begin{itemize}
+\item Simple calculus operations .
+\item Substituting values in expression 
+   using substitute function.
+\item Creating symbolic matrices and 
+   performing operation on them .
+\end{itemize}
+\end{frame}
+\begin{frame}
+\frametitle{Thank you!}
+\label{sec-15}
+
+  \begin{block}{}
+  \begin{center}
+  This spoken tutorial has been produced by the
+  \textcolor{blue}{FOSSEE} team, which is funded by the 
+  \end{center}
+  \begin{center}
+    \textcolor{blue}{National Mission on Education through \\
+      Information \& Communication Technology \\ 
+      MHRD, Govt. of India}.
+  \end{center}  
+  \end{block}
 \end{frame}
 
 \end{document}
--- a/symbolics/slides.org	Wed Nov 10 12:23:40 2010 +0530
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,33 +0,0 @@
-#+LaTeX_CLASS: beamer
-#+LaTeX_CLASS_OPTIONS: [presentation]
-#+BEAMER_FRAME_LEVEL: 1
-
-#+BEAMER_HEADER_EXTRA: \usetheme{Warsaw}\useoutertheme{infolines}\usecolortheme{default}\setbeamercovered{transparent}
-#+COLUMNS: %45ITEM %10BEAMER_env(Env) %10BEAMER_envargs(Env Args) %4BEAMER_col(Col) %8BEAMER_extra(Extra)
-#+PROPERTY: BEAMER_col_ALL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 :ETC
-#+OPTIONS:   H:5 num:t toc:nil \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
-
-#+TITLE: Plotting Data 
-#+AUTHOR: FOSSEE
-#+DATE: 2010-09-14 Tue
-#+EMAIL:     info@fossee.in
-
-# \author[FOSSEE] {FOSSEE}
-
-# \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
-# \date{}
-
-* Tutorial Plan
-** Defining symbolic expressions in sage.  
-** Using built-in costants and functions. 
-** Performing Integration, differentiation using sage. 
-** Defining matrices. 
-** Defining Symbolic functions.  
-** Simplifying and solving symbolic expressions and functions.
-* Summary
-** We learnt about defining symbolic expression and functions.  
-** Using built-in constants and functions.  
-** Using <Tab>  to see the documentation of a function.  
-** Simple calculus operations .  
-** Substituting values in expression using substitute function.
-** Creating symbolic matrices and performing operation on them .