--- a/statistics/questions.rst Thu Oct 21 18:22:07 2010 +0530
+++ b/statistics/questions.rst Tue Oct 26 15:44:09 2010 +0530
@@ -8,15 +8,13 @@
sum
2. Calcutate the mean of the given list?
-
student_marks=[74,78,56,87,91,82]
mean(student_marks)
-3. Given a two dimensional list,::
+3. Given a two dimensional list,
two_dimensional_list=[[3,5,8,2,1],[4,3,6,2,1]]
-
how do we calculate the mean of each row?
@@ -27,7 +25,6 @@
std
5. Calcutate the median of the given list?
-
student_marks=[74,78,56,87,91,82]
median(age_list)
@@ -50,5 +47,10 @@
.. A minimum of 2 questions here (along with answers)
-1. Question 1
-2. Question 2
+1. Get the weighted mean of [74,64,86,76,83] where the weights are
+ [2,2,1,4,4] respectively.
+
+ Hint: Readup on function average using average?
+
+2. Calculate the weighted standard deviation for the sequence [74,64,86,76,83], such that the weights are [2,2,1,4,4] .
+
--- a/statistics/script.rst Thu Oct 21 18:22:07 2010 +0530
+++ b/statistics/script.rst Tue Oct 26 15:44:09 2010 +0530
@@ -105,7 +105,7 @@
* Roll Number 015163
* Name JOSEPH RAJ S
* Marks of 5 subjects: ** English 083 ** Hindi 042 ** Maths 47 **
-Science AA (Absent) ** Social 72
+Science 35 ** Social 72
* Total marks 244
*
@@ -165,8 +165,9 @@
This tutorial was created as a part of FOSSEE project, NME ICT, MHRD India
Hope you have enjoyed and found it useful.
+
Thankyou
-
+
.. Author : Amit Sethi
Internal Reviewer 1 :
Internal Reviewer 2 :
--- a/symbolics/questions.rst Thu Oct 21 18:22:07 2010 +0530
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,61 +0,0 @@
-Objective Questions
--------------------
-
-.. A mininum of 8 questions here (along with answers)
-
-1. How do you define a name 'y' as a symbol?
-
-
- Answer: var('y')
-
-2. List out some constants pre-defined in sage?
-
- Answer: pi, e ,euler_gamma
-
-3. List the functions for differentiation and integration in sage?
-
- Answer: diff and integral
-
-4. Get the value of pi upto precision 5 digits using sage?
-
- Answer: n(pi,5)
-
-5. Find third order differential of function.
-
- f(x)=sin(x^2)+exp(x^3)
-
- Answer: diff(f(x),x,3)
-
-6. What is the function to find factors of an expression?
-
- Answer: factor
-
-7. What is syntax for simplifying a function f?
-
- Answer f.simplify_full()
-
-8. Find the solution for x between pi/2 to pi for the given equation?
-
- sin(x)==cos(x^3)+exp(x^4)
- find_root(sin(x)==cos(x^3)+exp(x^4),pi/2,pi)
-
-9. Create a simple two dimensional matrix with two symbolic variables?
-
- var('a,b')
- A=matrix([[a,1],[2,b]])
-
-Larger Questions
-----------------
-
-.. A minimum of 2 questions here (along with answers)
-
-1.Find the points of intersection of the circles
-
- x^2 + y^2 - 4x = 1
- x^2 + y^2 - 2y = 9
-
-2. Integrate the function
-
-x^2*cos(x)
-
-between 1 to 3.
--- a/symbolics/quickref.tex Thu Oct 21 18:22:07 2010 +0530
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,8 +0,0 @@
-Creating a linear array:\\
-{\ex \lstinline| x = linspace(0, 2*pi, 50)|}
-
-Plotting two variables:\\
-{\ex \lstinline| plot(x, sin(x))|}
-
-Plotting two lists of equal length x, y:\\
-{\ex \lstinline| plot(x, y)|}
--- a/symbolics/script.rst Thu Oct 21 18:22:07 2010 +0530
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,277 +0,0 @@
-Symbolics with Sage
--------------------
-
-Hello friends and welcome to the tutorial on symbolics with sage.
-
-{{{ Show welcome slide }}}
-
-
-.. #[Madhu: What is this line doing here. I don't see much use of it]
-
-During the course of the tutorial we will learn
-
-{{{ Show outline slide }}}
-
-* Defining symbolic expressions in sage.
-* Using built-in costants and functions.
-* Performing Integration, differentiation using sage.
-* Defining matrices.
-* Defining Symbolic functions.
-* Simplifying and solving symbolic expressions and functions.
-
-We can use Sage for symbolic maths.
-
-On the sage notebook type::
-
- sin(y)
-
-It raises a name error saying that y is not defined. But in sage we
-can declare y as a symbol using var function.
-
-
-::
- var('y')
-
-Now if you type::
-
- sin(y)
-
-sage simply returns the expression.
-
-
-Thus sage treats sin(y) as a symbolic expression . We can use
-this to do symbolic maths using sage's built-in constants and
-expressions..
-
-
-So let us try ::
-
- var('x,alpha,y,beta')
- x^2/alpha^2+y^2/beta^2
-
-taking another example
-
- var('theta')
- sin^2(theta)+cos^2(theta)
-
-
-Similarly, we can define many algebraic and trigonometric expressions
-using sage .
-
-
-Sage also provides a few built-in constants which are commonly used in
-mathematics .
-
-example : pi,e,infinity , Function n gives the numerical values of all these
- constants.
-
-{{{ Type n(pi)
- n(e)
- n(oo)
- On the sage notebook }}}
-
-
-
-If you look into the documentation of function "n" by doing
-
-.. #[Madhu: "documentation of the function "n"?]
-
-::
- n(<Tab>
-
-You will see what all arguments it takes and what it returns. It will be very
-helpful if you look at the documentation of all functions introduced through
-this script.
-
-
-
-Also we can define the no. of digits we wish to use in the numerical
-value . For this we have to pass an argument digits. Type
-
-.. #[Madhu: "no of digits"? Also "We wish to obtain" than "we wish to
- use"?]
-::
-
- n(pi, digits = 10)
-
-Apart from the constants sage also has a lot of builtin functions like
-sin,cos,log,factorial,gamma,exp,arcsin etc ...
-lets try some of them out on the sage notebook.
-
-
-::
-
- sin(pi/2)
-
- arctan(oo)
-
- log(e,e)
-
-
-Given that we have defined variables like x,y etc .. , We can define
-an arbitrary function with desired name in the following way.::
-
- var('x')
- function('f',x)
-
-
-Here f is the name of the function and x is the independent variable .
-Now we can define f(x) to be ::
-
- f(x) = x/2 + sin(x)
-
-Evaluating this function f for the value x=pi returns pi/2.::
-
- f(pi)
-
-We can also define functions that are not continuous but defined
-piecewise. Let us define a function which is a parabola between 0
-to 1 and a constant from 1 to 2 . Type the following as given on the
-screen
-
-::
-
-
- var('x')
- h(x)=x^2 g(x)=1
- f=Piecewise(<Tab>
-
-{{{ Show the documentation of Piecewise }}}
-
-::
- f=Piecewise([[(0,1),h(x)],[(1,2),g(x)]],x) f
-
-
-
-
-We can also define functions which are series
-
-
-We first define a function f(n) in the way discussed above.::
-
- var('n')
- function('f', n)
-
-
-To sum the function for a range of discrete values of n, we use the
-sage function sum.
-
-For a convergent series , f(n)=1/n^2 we can say ::
-
- var('n')
- function('f', n)
-
- f(n) = 1/n^2
-
- sum(f(n), n, 1, oo)
-
-
-Lets us now try another series ::
-
-
- f(n) = (-1)^(n-1)*1/(2*n - 1)
- sum(f(n), n, 1, oo)
-
-
-This series converges to pi/4.
-
-
-Moving on let us see how to perform simple calculus operations using Sage
-
-For example lets try an expression first ::
-
- diff(x**2+sin(x),x)
- 2x+cos(x)
-
-The diff function differentiates an expression or a function. Its
-first argument is expression or function and second argument is the
-independent variable.
-
-We have already tried an expression now lets try a function ::
-
- f=exp(x^2)+arcsin(x)
- diff(f(x),x)
-
-To get a higher order differential we need to add an extra third argument
-for order ::
-
- diff(<tab> diff(f(x),x,3)
-
-in this case it is 3.
-
-
-Just like differentiation of expression you can also integrate them ::
-
- x = var('x')
- s = integral(1/(1 + (tan(x))**2),x)
- s
-
-
-
-Many a times we need to find factors of an expression ,we can use the "factor" function
-
-::
- factor(<tab>
- y = (x^100 - x^70)*(cos(x)^2 + cos(x)^2*tan(x)^2)
- f = factor(y)
-
-One can simplify complicated expression ::
-
- f.simplify_full()
-
-This simplifies the expression fully . We can also do simplification
-of just the algebraic part and the trigonometric part ::
-
- f.simplify_exp()
- f.simplify_trig()
-
-
-
-One can also find roots of an equation by using find_root function::
-
- phi = var('phi')
- find_root(cos(phi)==sin(phi),0,pi/2)
-
-Lets substitute this solution into the equation and see we were
-correct ::
-
- var('phi')
- f(phi)=cos(phi)-sin(phi)
- root=find_root(f(phi)==0,0,pi/2)
- f.substitute(phi=root)
-
-as we can see when we substitute the value the answer is almost = 0 showing
-the solution we got was correct.
-
-
-
-
-Lets us now try some matrix algebra symbolically ::
-
-
-
- var('a,b,c,d')
- A=matrix([[a,1,0],[0,b,0],[0,c,d]])
- A
-
-Now lets do some of the matrix operations on this matrix
-
-
-::
- A.det()
- A.inverse()
-
-
-
-{{{ Part of the notebook with summary }}}
-
-So in this tutorial we learnt how to
-
-
-* We learnt about defining symbolic expression and functions.
-* Using built-in constants and functions.
-* Using <Tab> to see the documentation of a function.
-* Simple calculus operations .
-* Substituting values in expression using substitute function.
-* Creating symbolic matrices and performing operation on them .
-
--- a/symbolics/slides.tex Thu Oct 21 18:22:07 2010 +0530
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,67 +0,0 @@
-% Created 2010-10-21 Thu 00:06
-\documentclass[presentation]{beamer}
-\usetheme{Warsaw}\useoutertheme{infolines}\usecolortheme{default}\setbeamercovered{transparent}
-\usepackage[latin1]{inputenc}
-\usepackage[T1]{fontenc}
-\usepackage{graphicx}
-\usepackage{longtable}
-\usepackage{float}
-\usepackage{wrapfig}
-\usepackage{soul}
-\usepackage{amssymb}
-\usepackage{hyperref}
-
-
-\title{Plotting Data }
-\author{FOSSEE}
-\date{2010-09-14 Tue}
-
-\begin{document}
-
-\maketitle
-
-
-
-
-
-
-\begin{frame}
-\frametitle{Tutorial Plan}
-\label{sec-1}
-\begin{itemize}
-
-\item Defining symbolic expressions in sage.\\
-\label{sec-1.1}%
-\item Using built-in costants and functions.\\
-\label{sec-1.2}%
-\item Performing Integration, differentiation using sage.\\
-\label{sec-1.3}%
-\item Defining matrices.\\
-\label{sec-1.4}%
-\item Defining Symbolic functions.\\
-\label{sec-1.5}%
-\item Simplifying and solving symbolic expressions and functions.\\
-\label{sec-1.6}%
-\end{itemize} % ends low level
-\end{frame}
-\begin{frame}
-\frametitle{Summary}
-\label{sec-2}
-\begin{itemize}
-
-\item We learnt about defining symbolic expression and functions.\\
-\label{sec-2.1}%
-\item Using built-in constants and functions.\\
-\label{sec-2.2}%
-\item Using <Tab> to see the documentation of a function.\\
-\label{sec-2.3}%
-\item Simple calculus operations .\\
-\label{sec-2.4}%
-\item Substituting values in expression using substitute function.\\
-\label{sec-2.5}%
-\item Creating symbolic matrices and performing operation on them .\\
-\label{sec-2.6}%
-\end{itemize} % ends low level
-\end{frame}
-
-\end{document}