# HG changeset patch # User amit # Date 1284645675 -19800 # Node ID fe7aad827c9cd9a1f8a76028aa1d072d49833839 # Parent b92b4e7ecd7b53a7d9e85406593ca81266414837 Initial Commit of simple plotting and plot user interface diff -r b92b4e7ecd7b -r fe7aad827c9c plotui.rst --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/plotui.rst Thu Sep 16 19:31:15 2010 +0530 @@ -0,0 +1,177 @@ +Hello and welcome to the tutorial on creating simple plots using +Python.This tutorial is presented by the Fossee group. +{{{ Show the Title Slide }}} + +I hope you have IPython running on your computer. + +In this tutorial we will look at plot command and also how to study +the plot using the UI. + +{{{ Show Outline Slide }}} + +Lets start ipython on your shell, type :: + + $ipython -pylab + + +Pylab is a python library which provides plotting functionality.It +also provides many other important mathematical and scientific +functions. After running IPython -pylab in your shell if at the top of +the result of this command, you see something like :: + + + `ERROR: matplotlib could NOT be imported! Starting normal + IPython.` + + +{{{ Slide with Error written on it }}} + +Then you have to install matplotlib and run this command again. + +Now type in your ipython shell :: + + In[]: linpace? + + + +as the documentation says, it returns `num` evenly spaced samples, +calculated over the interval start and stop. To illustrate this, lets +do it form 1 to 100 and try 100 points. :: + + In[]: linspace(1,100,100) + +As you can see a sequence of numbers from 1 to 100 appears. + +Now lets try 200 points between 0 and 1 you do this by typing :: + + + In[]: linspace(0,1,200) + +0 for start , 1 for stop and 200 for no of points. In linspace +the start and stop points can be integers, decimals , or +constants. Let's try and get 100 points between -pi to pi. Type :: + + In[]: p = linspace(-pi,pi,100) + + +'pi' here is constant defined by pylab. Save this to the variable, p +. + +If you now :: + + In[]: len(p) + +You will get the no. of points. len function gives the no of elements +of a sequence. + + +Let's try and plot a cosine curve between -pi and pi using these +points. Simply type :: + + + In[]: plot(p,cos(points)) + +Here cos(points) gets the cosine value at every corresponding point to +p. + + +We can also save cos(points) to variable cosine and plot it using +plot.:: + + In[]: cosine=cos(points) + + In[]: plot(p,cosine) + + + +Now do :: + + In[]: clf() + +this will clear the plot. + +This is done because any other plot we try to make shall come on the +same drawing area. As we do not wish to clutter the area with +overlaid plots , we just clear it with clf(). Now lets try a sine +plot. :: + + + In []: plot(p,sin(p)) + + + + +The Window on which the plot appears can be used to study it better. + +First of all moving the mouse around gives us the point where mouse +points at. + +Also we have some buttons the right most among them is +for saving the file. + +Just click on it specifying the name of the file. We will save the plot +by the name sin_curve in pdf format. + +{{{ Action corelating with the words }}} + +As you can see I can specify format of file. +Left to the save button is the slider button to specify the margins. + +{{{ Action corelating with the words }}} + +Left to this is zoom button to zoom into the plot. Just specify the +region to zoom into. +The button left to it can be used to move the axes of the plot. + +{{{ Action corelating with the words }}} + +The next two buttons with a left and right arrow icons change the state of the +plot and take it to the previous state it was in. It more or less acts like a +back and forward button in the browser. + +{{{ Action corelating with the words }}} + +The last one is 'home' referring to the initial plot. + +{{{ Action corelating with the words}}} + + + +{{{ Summary Slide }}} + + +In this tutorial we have looked at + +1. Starting Ipython with pylab + +2. Using linspace function to create `num` equaly spaced points in a region. + +3. Finding length of sequnces using len. + +4. Plotting mathematical functions using plot. + +4. Clearing drawing area using clf + +5. Using the UI of plot for studying it better . Using functionalities like save , zoom , moving the plots on x and y axis + +etc .. + + + +{{{ Show the "sponsored by FOSSEE" slide }}} + + + +This tutorial was created as a part of FOSSEE project, NME ICT, MHRD India + + + + Hope you have enjoyed and found it useful. + + Thankyou + + + +Author : Amit Sethi +Internal Reviewer : +Internal Reviewer 2 :