# HG changeset patch # User Shantanu # Date 1271399563 -19800 # Node ID 12729a0a189376a49c7e5c63f609b09ddb4c0079 # Parent bc3f351aeec96a4391376e605db97a793993128e# Parent 9dffd11728d2a095fe13778194de914cad3a4532 Merged branches. diff -r 9dffd11728d2 -r 12729a0a1893 presentations/arrays.tex --- a/presentations/arrays.tex Thu Apr 15 16:02:53 2010 +0530 +++ b/presentations/arrays.tex Fri Apr 16 12:02:43 2010 +0530 @@ -73,8 +73,10 @@ \begin{frame} \frametitle{About the Session} \begin{block}{Goal} -Perform efficient matrix operations. -Basic Image processing. + \begin{itemize} + \item Perform efficient matrix operations. + \item Basic Image processing. + \end{itemize} \end{block} \begin{block}{Checklist} \begin{itemize} diff -r 9dffd11728d2 -r 12729a0a1893 presentations/least-square.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/presentations/least-square.tex Fri Apr 16 12:02:43 2010 +0530 @@ -0,0 +1,168 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%Tutorial slides on Python. +% +% Author: FOSSEE +% Copyright (c) 2009, FOSSEE, IIT Bombay +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\documentclass[14pt,compress]{beamer} +%\documentclass[draft]{beamer} +%\documentclass[compress,handout]{beamer} +%\usepackage{pgfpages} +%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm] + +% Modified from: generic-ornate-15min-45min.de.tex +\mode +{ + \usetheme{Warsaw} + \useoutertheme{infolines} + \setbeamercovered{transparent} +} + +\usepackage[english]{babel} +\usepackage[latin1]{inputenc} +%\usepackage{times} +\usepackage[T1]{fontenc} + +% Taken from Fernando's slides. +\usepackage{ae,aecompl} +\usepackage{mathpazo,courier,euler} +\usepackage[scaled=.95]{helvet} + +\definecolor{darkgreen}{rgb}{0,0.5,0} + +\usepackage{listings} +\lstset{language=Python, + basicstyle=\ttfamily\bfseries, + commentstyle=\color{red}\itshape, + stringstyle=\color{darkgreen}, + showstringspaces=false, + keywordstyle=\color{blue}\bfseries} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% Macros +\setbeamercolor{emphbar}{bg=blue!20, fg=black} +\newcommand{\emphbar}[1] +{\begin{beamercolorbox}[rounded=true]{emphbar} + {#1} + \end{beamercolorbox} +} +\newcounter{time} +\setcounter{time}{0} +\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}} + +\newcommand{\typ}[1]{\lstinline{#1}} + +\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} } + +% Title page +\title{Python for Scientific Computing : Least Square Fit} + +\author[FOSSEE] {FOSSEE} + +\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} +\date{} + +% DOCUMENT STARTS +\begin{document} + +\begin{frame} + \maketitle +\end{frame} + +\begin{frame} + \frametitle{About the Session} + \begin{block}{Goal} +Finding least square fit of given data-set + \end{block} + \begin{block}{Checklist} + \begin{itemize} + \item pendulum.txt + \end{itemize} + \end{block} +\end{frame} + +\begin{frame}[fragile] + \frametitle{$L$ vs. $T^2$ - Scatter} + \vspace{-0.15in} + \begin{figure} + \includegraphics[width=4in]{data/L-Tsq-points} + \end{figure} +\end{frame} + +\begin{frame}[fragile] + \frametitle{$L$ vs. $T^2$ - Line} + \vspace{-0.15in} + \begin{figure} + \includegraphics[width=4in]{data/L-Tsq-Line} + \end{figure} +\end{frame} + +\begin{frame}[fragile] + \frametitle{$L$ vs. $T^2$ } + \frametitle{$L$ vs. $T^2$ - Least Square Fit} + \vspace{-0.15in} + \begin{figure} + \includegraphics[width=4in]{data/least-sq-fit} + \end{figure} +\end{frame} + +\begin{frame} + \frametitle{Least Square Fit Curve} + \begin{center} + \begin{itemize} + \item $L \alpha T^2$ + \item Best Fit Curve $\rightarrow$ Linear + \begin{itemize} + \item Least Square Fit + \end{itemize} +\item \typ{lstsq()} + \end{itemize} + \end{center} +\end{frame} + +\begin{frame}[fragile] + \frametitle{\typ{lstsq}} + \begin{itemize} + \item We need to fit a line through points for the equation $T^2 = m \cdot L+c$ + \item In matrix form, the equation can be represented as $T_{sq} = A \cdot p$, where $T_{sq}$ is + $\begin{bmatrix} + T^2_1 \\ + T^2_2 \\ + \vdots\\ + T^2_N \\ + \end{bmatrix}$ +, A is + $\begin{bmatrix} + L_1 & 1 \\ + L_2 & 1 \\ + \vdots & \vdots\\ + L_N & 1 \\ + \end{bmatrix}$ + and p is + $\begin{bmatrix} + m\\ + c\\ + \end{bmatrix}$ + \item We need to find $p$ to plot the line + \end{itemize} +\end{frame} + +\begin{frame}[fragile] + \frametitle{Summary} + \begin{block}{} + + \end{block} +\end{frame} + +\begin{frame} + \frametitle{Thank you!} + \begin{block}{} + This session is part of \textcolor{blue}{FOSSEE} project funded by: + \begin{center} + \textcolor{blue}{NME through ICT from MHRD, Govt. of India}. + \end{center} + \end{block} +\end{frame} + +\end{document}