# HG changeset patch # User Puneeth Chaganti # Date 1286698569 -19800 # Node ID 6548b2248b512abf79a3ecb015add14ce9efb0f0 # Parent 31fc2f22ff307df46df88daae549c0d922b15984# Parent a4203cc8d4a21649e36fad6f013de3c78a9ac17b Merged heads, again. diff -r 31fc2f22ff30 -r 6548b2248b51 plotting_using_sage/questions.rst --- a/plotting_using_sage/questions.rst Sun Oct 10 13:44:51 2010 +0530 +++ b/plotting_using_sage/questions.rst Sun Oct 10 13:46:09 2010 +0530 @@ -1,90 +1,70 @@ Objective Questions ------------------- - 1. If ``a = [1, 1, 2, 3, 3, 5, 5, 8]``. What is set(a) - - a. set([1, 1, 2, 3, 3, 5, 5, 8]) - #. set([1, 2, 3, 5, 8]) - #. set([1, 2, 3, 3, 5, 5]) - #. Error + 1. Plot the curve ``sin(x) - cos(x)`` in the range (0, 2pi) - Answer: set([1, 2, 3, 5, 8]) - - 2. ``a = set([1, 3, 5])``. How do you find the length of a? - - Answer: len(a) - - 3. ``a = set([1, 3, 5])``. What does a[2] produce? + Answer:: - a. 1 - #. 3 - #. 5 - #. Error - - Answer: Error - - 4. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What - is the value of ``odd | squares``? + x = var('x') + plot(sin(x) - cos(x), (x, 0, 2*pi)) - Answer: set([1, 3, 4, 5, 7, 9, 16]) - - 5. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What - is the value of ``odd - squares``? + 2. plot ``sin(3x)`` and ``cos(x/3)`` and show them in same figure - Answer: set([3, 5, 7]) - - 6. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What - is the value of ``odd ^ squares``? + Answer:: - Answer: set([3, 4, 5, 7, 16]) - - 7. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What - does ``odd * squares`` give? + x = var('x') + p1 = plot(sin(3*x), (x, 0, 2*pi)) + p2 = plot(cos(x/3), (x, 0, 2*pi)) + show(p1+p2) - a. set([1, 12, 45, 112, 9]) - #. set([1, 3, 4, 5, 7, 9, 16]) - #. set([]) - #. Error - - Answer: Error - - 8. ``a = set([1, 2, 3, 4])`` and ``b = set([5, 6, 7, 8])``. What is ``a + b`` + 3. plot ``cos(x)`` vs ``sin(x)^15`` in the range (-2pi, 2pi) - a. set([1, 2, 3, 4, 5, 6, 7, 8]) - #. set([6, 8, 10, 12]) - #. set([5, 12, 21, 32]) - #. Error - - 9. ``a`` is a set. how do you check if if a varaible ``b`` exists in ``a``? - - Answer: b in a - - 10. ``a`` and ``b`` are two sets. What is ``a ^ b == (a - b) | (b - a)``? + Answer:: - a. True - #. False - - Answer: False - + x = var('x') + parametric_plot((cos(x), sin(x)^15), (x, -2*pi, 2*pi)) -Larger Questions ----------------- - - 1. Given that mat_marks is a list of maths marks of a class. Find out the - no.of duplicates marks in the list. + 4. plot tan curve in the range (-2pi, 2pi) in red colour. + [hint: see the documentation] Answer:: - unique_marks = set(mat_marks) - no_of_duplicates = len(mat_marks) - len(unique_marks) + x = var('x') + p1 = plot(tan(x), (x, -2*pi, 2*pi), color=(1, 0, 0)) + show(p1) + + 5. plot ``e^(1/x^2)`` in the range (0.5, 2.5) and set the y-axis limits to (0, + 20) - 2. Given that mat_marks is a list of maths marks of a class. Find how many - duplicates of each mark exist. + Answer:: + + x = var('x') + p2 = plot(e^(1/x^2), (x, 0.5, 2.5)) + show(p2, ymin=0, ymax=20) + + 6. plot the function ``y = 5x + 3`` using dotted line in the range (-2, 2) + [hint: read the documentation of the function ``line``] Answer:: - marks_set = set(mat_marks) - for mark in marks_set: - occurences = mat_marks.count(mark) - print occurences - 1, "duplicates of", mark, "exist" + points = [ (i, 5*i+3) for i in srange(-2,2,0.1) ] + l1 = line(points, linestyle=":") + show(l1) + + 7. plot the function ``z = cos(x) + sin(y)`` for x in the range (0, 2pi) and y + in range (-2pi, 2pi) + + Answer:: + x, y = var('x y') + plot3d(cos(x) + sin(y), (x, 0, 2*pi), (y, -2*pi, 2*pi)) + + 8. Read the sage documentation and find out which function plots closed surfaces + + a. parametric_plot3d + #. plot3d + #. implicit_plot3d + #. contour_plot + + Answer: implicit_plot3d + diff -r 31fc2f22ff30 -r 6548b2248b51 using_sage_to_teach/questions.rst --- a/using_sage_to_teach/questions.rst Sun Oct 10 13:44:51 2010 +0530 +++ b/using_sage_to_teach/questions.rst Sun Oct 10 13:46:09 2010 +0530 @@ -1,90 +1,36 @@ Objective Questions ------------------- - 1. If ``a = [1, 1, 2, 3, 3, 5, 5, 8]``. What is set(a) - - a. set([1, 1, 2, 3, 3, 5, 5, 8]) - #. set([1, 2, 3, 5, 8]) - #. set([1, 2, 3, 3, 5, 5]) - #. Error - - Answer: set([1, 2, 3, 5, 8]) - - 2. ``a = set([1, 3, 5])``. How do you find the length of a? - - Answer: len(a) - - 3. ``a = set([1, 3, 5])``. What does a[2] produce? - - a. 1 - #. 3 - #. 5 - #. Error + 1. which default argument, when used with ``@interact`` gives a slider + starting at 0 and ending in 10 - Answer: Error - - 4. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What - is the value of ``odd | squares``? - - Answer: set([1, 3, 4, 5, 7, 9, 16]) - - 5. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What - is the value of ``odd - squares``? + a. (0..11) + #. range(0, 11) + #. [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + #. (0..10) - Answer: set([3, 5, 7]) - - 6. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What - is the value of ``odd ^ squares``? + Answer: (0..10) - Answer: set([3, 4, 5, 7, 16]) - - 7. ``odd = set([1, 3, 5, 7, 9])`` and ``squares = set([1, 4, 9, 16])``. What - does ``odd * squares`` give? + 2. What is the input widget resulted by using ``n = [2, 4, 5, 9]`` in the + default arguments along with ``@interact`` - a. set([1, 12, 45, 112, 9]) - #. set([1, 3, 4, 5, 7, 9, 16]) - #. set([]) - #. Error - - Answer: Error - - 8. ``a = set([1, 2, 3, 4])`` and ``b = set([5, 6, 7, 8])``. What is ``a + b`` + a. input field + #. set of buttons + #. slider + #. None - a. set([1, 2, 3, 4, 5, 6, 7, 8]) - #. set([6, 8, 10, 12]) - #. set([5, 12, 21, 32]) - #. Error - - 9. ``a`` is a set. how do you check if if a varaible ``b`` exists in ``a``? + Answer: set of buttons - Answer: b in a - - 10. ``a`` and ``b`` are two sets. What is ``a ^ b == (a - b) | (b - a)``? - - a. True - #. False + 3. what is the type of ``n`` in the following function:: - Answer: False - - -Larger Questions ----------------- - - 1. Given that mat_marks is a list of maths marks of a class. Find out the - no.of duplicates marks in the list. - - Answer:: + @interact + def f(n=2.5): + # do something with n - unique_marks = set(mat_marks) - no_of_duplicates = len(mat_marks) - len(unique_marks) - - 2. Given that mat_marks is a list of maths marks of a class. Find how many - duplicates of each mark exist. + a. int + #. float + #. string + #. complex - Answer:: + Answer: float - marks_set = set(mat_marks) - for mark in marks_set: - occurences = mat_marks.count(mark) - print occurences - 1, "duplicates of", mark, "exist" -