#+LaTeX_CLASS: beamer
#+LaTeX_CLASS_OPTIONS: [presentation]
#+BEAMER_FRAME_LEVEL: 1
#+BEAMER_HEADER_EXTRA: \usetheme{Warsaw}\usecolortheme{default}\useoutertheme{infolines}\setbeamercovered{transparent}
#+COLUMNS: %45ITEM %10BEAMER_env(Env) %10BEAMER_envargs(Env Args) %4BEAMER_col(Col) %8BEAMER_extra(Extra)
#+PROPERTY: BEAMER_col_ALL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 :ETC
#+LaTeX_CLASS: beamer
#+LaTeX_CLASS_OPTIONS: [presentation]
#+LaTeX_HEADER: \usepackage[english]{babel} \usepackage{ae,aecompl}
#+LaTeX_HEADER: \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet}
#+LaTeX_HEADER: \usepackage{listings}
#+LaTeX_HEADER:\lstset{language=Python, basicstyle=\ttfamily\bfseries,
#+LaTeX_HEADER: commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen},
#+LaTeX_HEADER: showstringspaces=false, keywordstyle=\color{blue}\bfseries}
#+TITLE: Getting started with symbolics
#+AUTHOR: FOSSEE
#+EMAIL:
#+DATE:
#+DESCRIPTION:
#+KEYWORDS:
#+LANGUAGE: en
#+OPTIONS: H:3 num:nil toc:nil \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
#+OPTIONS: TeX:t LaTeX:nil skip:nil d:nil todo:nil pri:nil tags:not-in-toc
* Outline
- Defining symbolic expressions in sage.
- Using built-in constants and functions.
- Performing Integration, differentiation using sage.
- Defining matrices.
- Defining Symbolic functions.
- Simplifying and solving symbolic expressions and functions.
* Questions 1
- Define the following expression as symbolic
expression in sage.
- x^2+y^2
- y^2-4ax
* Solutions 1
#+begin_src python
var('x,y')
x^2+y^2
var('a,x,y')
y^2-4*a*x
#+end_src python
* Questions 2
- Find the values of the following constants upto 6 digits precision
- pi^2
- Find the value of the following.
- sin(pi/4)
- ln(23)
* Solutions 2
#+begin_src python
n(pi^2,digits=6)
n(sin(pi/4))
n(log(23,e))
#+end_src python
* Question 2
- Define the piecewise function.
f(x)=3x+2
when x is in the closed interval 0 to 4.
f(x)=4x^2
between 4 to 6.
- Sum of 1/(n^2-1) where n ranges from 1 to infinity.
* Solution Q1
#+begin_src python
var('x')
h(x)=3*x+2
g(x)= 4*x^2
f=Piecewise([[(0,4),h(x)],[(4,6),g(x)]],x)
f
#+end_src python
* Solution Q2
#+begin_src python
var('n')
f=1/(n^2-1)
sum(f(n), n, 1, oo)
#+end_src python
* Questions 3
- Differentiate the following.
- x^5*log(x^7) , degree=4
- Integrate the given expression
- x*sin(x^2)
- Find x
- cos(x^2)-log(x)=0
- Does the equation have a root between 1,2.
* Solutions 3
#+begin_src python
var('x')
f(x)= x^5*log(x^7)
diff(f(x),x,5)
var('x')
integral(x*sin(x^2),x)
var('x')
f=cos(x^2)-log(x)
find_root(f(x)==0,1,2)
#+end_src
* Question 4
- Find the determinant and inverse of :
A=[[x,0,1][y,1,0][z,0,y]]
* Solution 4
#+begin_src python
var('x,y,z')
A=matrix([[x,0,1],[y,1,0],[z,0,y]])
A.det()
A.inverse()
#+end_src
* Summary
- We learnt about defining symbolic
expression and functions.
- Using built-in constants and functions.
- Using <Tab> to see the documentation of a
function.
* Summary
- Simple calculus operations .
- Substituting values in expression
using substitute function.
- Creating symbolic matrices and
performing operation on them .
* Thank you!
#+begin_latex
\begin{block}{}
\begin{center}
This spoken tutorial has been produced by the
\textcolor{blue}{FOSSEE} team, which is funded by the
\end{center}
\begin{center}
\textcolor{blue}{National Mission on Education through \\
Information \& Communication Technology \\
MHRD, Govt. of India}.
\end{center}
\end{block}
#+end_latex