getting-started-with-symbolics/slides.org
author anand
Thu, 11 Nov 2010 00:03:57 +0530
changeset 472 fcdec2d28c9a
parent 442 a9b71932cbfa
child 458 9a1c5d134feb
permissions -rw-r--r--
Checklist OK for `The other kinds of plots`

#+LaTeX_CLASS: beamer
#+LaTeX_CLASS_OPTIONS: [presentation]
#+BEAMER_FRAME_LEVEL: 1

#+BEAMER_HEADER_EXTRA: \usetheme{Warsaw}\usecolortheme{default}\useoutertheme{infolines}\setbeamercovered{transparent}
#+COLUMNS: %45ITEM %10BEAMER_env(Env) %10BEAMER_envargs(Env Args) %4BEAMER_col(Col) %8BEAMER_extra(Extra)
#+PROPERTY: BEAMER_col_ALL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 :ETC

#+LaTeX_CLASS: beamer
#+LaTeX_CLASS_OPTIONS: [presentation]

#+LaTeX_HEADER: \usepackage[english]{babel} \usepackage{ae,aecompl}
#+LaTeX_HEADER: \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet}

#+LaTeX_HEADER: \usepackage{listings}

#+LaTeX_HEADER:\lstset{language=Python, basicstyle=\ttfamily\bfseries,
#+LaTeX_HEADER:  commentstyle=\color{red}\itshape, stringstyle=\color{darkgreen},
#+LaTeX_HEADER:  showstringspaces=false, keywordstyle=\color{blue}\bfseries}

#+TITLE:   Getting started with symbolics
#+AUTHOR:    FOSSEE
#+EMAIL:     
#+DATE:    

#+DESCRIPTION: 
#+KEYWORDS: 
#+LANGUAGE:  en
#+OPTIONS:   H:3 num:nil toc:nil \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
#+OPTIONS:   TeX:t LaTeX:nil skip:nil d:nil todo:nil pri:nil tags:not-in-toc

* Outline
  - Defining symbolic expressions in sage.  
  - Using built-in constants and functions.   
  - Performing Integration, differentiation using sage. 
  - Defining matrices. 
  - Defining Symbolic functions.  
  - Simplifying and solving symbolic expressions and functions.

* Questions 1
  - Define the following expression as symbolic
    expression in sage.

    - x^2+y^2
    - y^2-4ax
  
* Solutions 1
#+begin_src python
  var('x,y')
  x^2+y^2

  var('a,x,y')
  y^2-4*a*x
#+end_src python
* Questions 2
  - Find the values of the following constants upto 6 digits  precision 
   
    - pi^2
   
      
  - Find the value of the following.

   - sin(pi/4)
   - ln(23)  

* Solutions 2
#+begin_src python
  n(pi^2,digits=6)
  n(sin(pi/4))
  n(log(23,e))
#+end_src python
* Question 2
  - Define the piecewise function. 
   f(x)=3x+2 
   when x is in the closed interval 0 to 4.
   f(x)=4x^2
   between 4 to 6. 
   
  - Sum  of 1/(n^2-1) where n ranges from 1 to infinity. 

* Solution Q1
#+begin_src python
  var('x') 
  h(x)=3*x+2 
  g(x)= 4*x^2
  f=Piecewise([[(0,4),h(x)],[(4,6),g(x)]],x)
  f
#+end_src python
* Solution Q2
#+begin_src python  
  var('n')
  f=1/(n^2-1) 
  sum(f(n), n, 1, oo)
#+end_src python  
 

* Questions 3
  - Differentiate the following. 
      
    - x^5*log(x^7)  , degree=4 

  - Integrate the given expression 
      
    - x*sin(x^2) 

  - Find x
    - cos(x^2)-log(x)=0
    - Does the equation have a root between 1,2. 

* Solutions 3
#+begin_src python
  var('x')
  f(x)= x^5*log(x^7) 
  diff(f(x),x,5)

  var('x')
  integral(x*sin(x^2),x) 

  var('x')
  f=cos(x^2)-log(x)
  find_root(f(x)==0,1,2)
#+end_src

* Question 4
  - Find the determinant and inverse of :

      A=[[x,0,1][y,1,0][z,0,y]]

* Solution 4
#+begin_src python  
  var('x,y,z')
  A=matrix([[x,0,1],[y,1,0],[z,0,y]])
  A.det()
  A.inverse()
#+end_src
* Summary
 - We learnt about defining symbolic 
   expression and functions.  
 - Using built-in constants and functions.  
 - Using <Tab>  to see the documentation of a 
   function.  
 
* Summary 
 - Simple calculus operations .  
 - Substituting values in expression 
   using substitute function.
 - Creating symbolic matrices and 
   performing operation on them .

* Thank you!
#+begin_latex
  \begin{block}{}
  \begin{center}
  This spoken tutorial has been produced by the
  \textcolor{blue}{FOSSEE} team, which is funded by the 
  \end{center}
  \begin{center}
    \textcolor{blue}{National Mission on Education through \\
      Information \& Communication Technology \\ 
      MHRD, Govt. of India}.
  \end{center}  
  \end{block}
#+end_latex